首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rechargeable aqueous batteries with non-toxic and non-flammable features are promising candidates for large-scale energy storage. However, their practical applications are impeded by the insufficient electrochemical stability windows of aqueous electrolytes and intrinsic drawbacks of current electrodes. Herein, an aqueous sulfur–iodine chemistry that can be deployed in aqueous battery systems by employing water-in-bisalt (WiBS) electrolyte, sulfur composite anode, and iodine composite cathode is demonstrated. The freestanding iodine/carbon cloth cathode and halide-containing WiBS electrolyte can support the continuous I+/I0 reaction by forming interhalogen. Meanwhile, the highly-concentrated electrolyte and inorganic-based solid electrolyte interphase can effectively suppress the dissolution/diffusion of polysulfides, thus realizing S/Sx2− conversion reactions on the anode. Therefore, the as-assembled aqueous sulfur–iodine batteries based on S/Sx2− and I+/I0 redox couples can deliver a high energy density of 158.7 Wh kg−1 with a considerable cycling performance and safety. Furthermore, this chemistry can be further extended to multivalent ion-based battery systems. As demonstration models, Ca-based and Al-based aqueous sulfur–iodine batteries are also fabricated, which provide a new avenue towards the development of aqueous batteries for low-cost and highly safe energy storage.  相似文献   

2.
Rechargeable aqueous Al-ion batteries (AIBs) are promising low-cost, safe, and high energy density systems for large-scale energy storage. However, the strong electrostatic interaction between the Al3+ and the host material, usually leads to sluggish Al3+ diffusion kinetics and severe structure collapse of the cathode material. Consequently, aqueous AIBs currently suffer from low energy density as well as inferior rate capability and cycling stability. Here, defective cobalt manganese oxide nanosheets are reported as cathode material for aqueous AIBs to improve both reaction kinetics and stability, delivering a record high energy density of 685 Wh kg−1 (based on the masses of the cathode and anode) and a reversible capacity of 585 mAh g−1 at 100 mA g−1 with a retention of 78% after 300 cycles. The impressive energy density and cycling stability are due to a synergistic effect between the substituted cobalt atoms and the manganese vacancies, which improve the structural stability and promote both electron conductivity and ion diffusion. When applied in aqueous Zn-ion batteries, a high specific energy of 390 Wh kg−1 at 100 mA g−1 is realized while retaining 84% initial capacity over 1000 cycles. The study offers a new pathway to building next-generation high-energy aqueous rechargeable metal batteries.  相似文献   

3.
Flexible Al–air batteries have attracted widespread attention in the field of wearable power due to the high theoretical energy density of Al metal. However, the efficiency degradation and anodizing retardation caused by Al parasitic corrosion severely limit the performance breakthrough of the batteries. Herein, a Prussian-blue bifunctional interface membrane is proposed to improving the discharge performance of hydrogel-based Al–air battery. When a rational 12 mg·cm−2 membrane is loaded, the effect of anticorrosion and activation is optimal thanks to the formation of a stable and breathable interface. The results demonstrate that a flexible Al–air battery using the membrane can output a high power density of 65.76 mW·cm−2. Besides, the battery can achieve a high capacity of 2377.43 mAh·g−1, anode efficiency of 79.78%, and energy density of 3176.39 Wh·kg−1 at 10 mA·cm−2. Density functional theory calculations uncover the anticorrosion-activation mechanism that Fe3+ with a large number of empty orbitals can accelerate electrons transfer, and nucleophilic reactant [FeII(CN)6]4− promotes the Al3+ diffusion. These findings are beneficial to the inhibition of interfacial parasitic corrosion and weakening of discharge hysteresis for flexible Al–air batteries.  相似文献   

4.
Rechargeable hydrogen gas batteries are highly desirable for large-scale energy storage because of their long life cycle, high round trip efficiency, fast reaction kinetics, and hydrogen gas profusion. Coupling advanced cathode chemistries with hydrogen gas anode is an emerging and exciting area of research. Here, a novel high-performance aqueous iodine-hydrogen gas (I2-H2) battery using iodine as cathode and hydrogen gas as the electrocatalytic anode in environmentally benign aqueous electrolytes is reported. The working chemistry of the battery involves I2/I solid-liquid reactions occurring over the cathode along with H2/H2O gas-liquid reactions at the anode, achieving a high rate performance of 100 C and long-lasting stability of over 60 000 cycles. Additionally, the static aqueous I2-H2 battery displays a volumetric capacity of 15.5 Ah L−1 along with good self-healing capability towards cell overcharge. The current battery design exhibits robust electrochemical performance irrespective of acidic, neutral, and alkaline electrolyte systems. This study paves the way towards the industrialization of economically effective, high-power density, and long-term I2-H2 batteries for large-scale energy storage applications.  相似文献   

5.
Aluminum is an attractive anode material in aqueous multivalent-metal batteries for large-scale energy storage because of its high Earth abundance, low cost, high theoretic capacity, and safety. However, state-of-the-art aqueous aluminum-ion batteries based on aluminum anode persistently suffer from poor rechargeability and low coulombic efficiency due to irreversibility of aluminum stripping/plating and dendrite growth. Here eutectic aluminum-cerium alloys in situ grafted with uniform ultrathin MXene (MXene/E-Al97Ce3) as flexible, reversible, and dendrite-free anode materials for rechargeable aqueous aluminum-ion batteries is reported. As a result of the MXene serving as stable solid electrolyte interphase to inhibit side reactions and the lamella-nanostructured E-Al97Ce3 enabling directional Al stripping and deposition by making use of symbiotic α-Al metal and intermetallic Al11Ce3 lamellas, the MXene/E-Al97Ce3 hybrid electrodes exhibit reversible and dendrite-free Al stripping/plating with low voltage polarization of ± 54 mV for ≥1000 h in a low-oxygen-concentration aqueous aluminum trifluoromethanesulfonate (Al(OTF)3) electrolyte. These superior electrochemical properties endow soft-package aluminum-ion batteries assembled with MXene/E-Al97Ce3 anode and AlxMnO2 cathode to have high initial discharge capacity of ≈360 mAh g−1 at 1 A g−1, and retain ≈85% after 500 cycles, along with the coulombic efficiency of as high as 99.5%.  相似文献   

6.
Rechargeable aqueous aluminum batteries (AABs) are potential candidates for future large-scale energy storage due to their large capacity and the high abundance of aluminum. However, AABs face the challenges of inferior rate capability and cycling life due to the high charge density of Al3+, which induces the sluggish intercalation/extraction dynamics and structure collapse of inorganic cathode materials during discharge–charge cycles. Here, the optimization of macrocyclic calix[4]quinone (C4Q) with a large cavity and multi-adjacent carbonyls structure from quinone compounds to become excellent cathode materials for high-energy-density AABs is reported. It exhibits a high capacity of 400 mAh g−1, a high rate capability (300 mAh g−1 at 800 mA g−1), and an excellent low-temperature performance (224 mAh g−1 at − 20  ° C). The combination of experiments and theoretical calculations proves that Al(OTF)2+ cations coordinate with the carbonyl groups of C4Q during the discharge process, which can reduce desolvation penalty. Moreover, the fabricated pouch-type Al-C4Q battery delivers an energy density of 93 Wh kg−1cell, showing great potential for large-scale applications. This work is expected to facilitate the application of organic cathode for AABs.  相似文献   

7.
Zinc-ion batteries (ZIBs) have been regarded as one of the most promising aqueous energy storage devices due to their low-cost, high capacity, and intrinsic safety. However, the relatively low Coulombic efficiency caused by the dendrite formation and side reactions greatly hinders the rejuvenation of ZIBs. Here, an utterly simple approach by pencil drawing is employed to improve the poor performance of normal Zn anode and hinders the formation of passivated byproduct as well as serious dendrite growth. Significantly, the functional graphite layer can not only act as ions buffer, but also guide the uniform nucleation of Zn2+ in graphite voids. With such synergy effect, the graphite-coated Zn anode (Zn–G) displays low overpotential, high reversibility, and dendrite-free durability compared with the pristine Zn. Consequently, a low voltage hysteresis of ≈ 28 mV can be achieved and maintained over 200 h. Furthermore, the Zn–G anode is paired with a V2O5·xH2O cathode to construct a rechargeable ZIB. As-assembled device can output high energy/power density of 324.3 Wh kg−1/3269.8 W kg−1 (based on the active mass loading in cathode) together with a capacity retention of ≈ 84% over 1500 cycles at a current density of 5 A g−1.  相似文献   

8.
Zinc-ion batteries (ZIBs) are viewed as a promising energy storage system for large-scale applications thanks to the low cost and wide accessibility of Zn-based materials, the high theoretical capacity of Zn anode, and their high level of safety. However, the practical application of ZIBs is hindered by the rapid performance degradation. Herein, a Zn–K hybrid ion battery design is proposed using a high-quality Prussian blue cathode and a nonflammable Zn–K hybrid ion electrolyte. The electrochemical process is divided into two parts, with K+ insertion/extraction occurring at the cathode side and Zn2+ plating/stripping occurring at the anode side, which avoids structure destruction caused by Zn2+ insertion in the cathode. The non-flammable electrolyte not only ensures high safety but also effectively suppresses dendrite growth on the Zn anode. The hybrid cells demonstrate a high capacity of 151.0 mAh g−1, a high voltage of 1.74 V (vs Zn2+/Zn), and an ultra-long cycle life of 15 000 cycles. Combining the nonflammable nature of the electrolyte, the abundance of raw materials, and good electrochemical performance, the Zn–K hybrid ion battery system promises a promising future for renewable energy storage applications.  相似文献   

9.
Freezing electrolyte and sluggish ionic migration kinetics limited the low-temperature performance of rechargeable batteries. Here, an aqueous proton battery is developed, which achieves both high power density and energy density at the ultralow temperature conditions. Electrolyte including 2 m HBF4  +  2 m Mn(BF4)2 is used for the ultralow freezing point of below − 160  ° C and high ionic conductivity of 0.21 mS cm−1 at − 70  ° C. Spectroscopic and nuclear magnetic resonance analysis demonstrate the introduction of BF4 anions efficiently break the hydrogen-bond networks of original water molecules, resulting in ultralow freezing point. Based on H+ uptake/removal reaction in alloxazine (ALO) anode and MnO2/Mn2+ conversion in carbon felt cathode, the aqueous proton battery can operate regularly even at − 90  ° C and obtain a high specific discharge capacity of 85 mA h g−1. Benefiting from the rapid diffusion of proton and the pseudocapacitive character of ALO electrolyte, this battery shows a high specific energy density of 110 Wh kg−1 at a specific power density of 1650 W kg−1 at − 60  ° C. This work presents a new way of developing low-temperature batteries.  相似文献   

10.
Aluminum–sulfur batteries employing high-capacity and low-cost electrode materials, as well as non-flammable electrolytes, are promising energy storage devices. However, the fast capacity fading due to the shuttle effect of polysulfides limits their further application. Herein, alkaline chlorides, for example, LiCl, NaCl, and KCl are proposed as electrolyte additives for promoting the cyclability of aluminum–sulfur batteries. Using NaCl as a model additive, it is demonstrated that its addition leads to the formation of a thicker, NaxAlyO2-containing solid electrolyte interphase on the aluminum metal anode (AMA) reducing the deposition of polysulfides. As a result, a specific discharge capacity of 473 mAh g−1 is delivered in an aluminum–sulfur battery with NaCl-containing electrolyte after 50 dis-/charge cycles at 100 mA g−1. In contrast, the additive-free electrolyte only leads to a specific capacity of 313 mAh g−1 after 50 cycles under the same conditions. A similar result is also observed with LiCl and KCl additives. When a KCl-containing electrolyte is employed, the capacity increases to 496 mA h g−1 can be achieved after 100 cycles at 50 mA g−1. The proposed additive strategy and the insight into the solid electrolyte interphase are beneficial for the further development of long-life aluminum–sulfur batteries.  相似文献   

11.
The most used systems based on the graphite-based cathode show unsatisfactory performance in dual-ion batteries. Developing new type cathode materials with high capacity for new type anions storage is an effective way to improve the total performance of dual-ion batteries. Herein, a protonated polyaniline (P-PANI) cathode is prepared to realize efficient and stable storage of ClO4, and a high reversible capacity of 143 mAh g−1 at 0.2 A g−1 after 200 cycles can be obtained, which is competitive compared with common graphite cathodes. In addition, the highly reversible coordination storage mechanism between ClO4 and P-PANI cathode is indicated, rather than the labored intercalation reactions between PF6 and graphite. Subsequently, a full cell (P-PANI//N-PDHC) fabricated with a P-PANI cathode and hard carbon anode (N-PDHC) can deliver a high energy density of 284 Wh kg–1 for 2000 cycles at 2 A g–1, and the relevant pouch-type full cell can easily power a smartphone. In general, this work may promote the exploitation of sodium-based dual-ion batteries in practical application.  相似文献   

12.
Multivalent-ion batteries with electrochromic functionality are an emerging green technology for development of low-carbon society. Compared to Mg2+, Zn2+ and Al3+, Ca2+ has a low polarization strength similar to that of Li+, therefore Ca2+ for electrochromism and battery can avoid kinetic issues caused by other multivalent-ions with high polarization strength. Here, by exploiting Ca-ion carriers for electrochromism and a water-in-salt (WIS) Ca(OTF)2 electrolyte for the first time, a new and safe aqueous Ca-ion electrochromic battery (CIEB) has been demonstrated. The WIS Ca(OTF)2 electrolyte demonstrates enhanced anion-cation interactions and decreased water activity. Vanadium oxide (VOx) and indium hexacyanoferrate (InHCF) films are respectively developed as anode and cathode because of their stable and high-rate Ca2+ insertion/extraction, as well as matched electrochromism. The CIEB demonstrates a stable and high-rate capability, a high energy density of 51.4 mWh m−2 at a power density of 1737.3 mW m−2, and a greenish yellow-to-black electrochromism. The presented results are beneficial for understanding redox kinetics in WIS electrolytes, and inspire researches on batteries and electrochromism with multivalent-ions.  相似文献   

13.
Rechargeable aqueous zinc (Zn)-ion batteries (RAZIBs), which use non-flammable aqueous electrolytes and low-cost electrode materials, show great potential to boost the development of safe, cost-effective, and highly efficient energy storage systems. The adoption of lightweight and inexpensive aluminum (Al) as current collectors seems to be a good vision, but Al exhibits an easily-corroded nature and a high impedance in aqueous electrolytes, making it a challenge to realize the utilization of Al current collector in RAZIBs. In this study, through the direct current magnetron sputtering, niobium (Nb) coated Al (Al-Nb) foils are prepared, which shows superior corrosion-resistance in an aqueous solution, while maintaining a satisfying electronic conductivity. Moreover, the Al-Nb foils can be adopted to both anode and cathode current collectors while exhibiting high coulombic efficiency and good cycling stability even when they are tested under a condition that can meet the real-world application demands, e.g., the Zn||Al-Nb half-cell shows an average coulombic efficiency of 99.17% in 320 cycles under a current density of 25 mA cm−2 and a galvanizing capacity of 6.25 mAh cm−2. The superior performance of the modified Al current collectors may mark a significant step toward the development of high-energy-density aqueous batteries.  相似文献   

14.
Rechargeable batteries with a Li metal anode and Ni‐rich Li[NixCoyMn1?x?y]O2 cathode (Li/Ni‐rich NCM battery) have been emerging as promising energy storage devices because of their high‐energy density. However, Li/Ni‐rich NCM batteries have been plagued by the issue of the thermodynamic instability of the Li metal anode and aggressive surface chemistry of the Ni‐rich cathode against electrolyte solution. In this study, a bi‐functional additive, adiponitrile (C6H8N2), is proposed which can effectively stabilize both the Li metal anode and Ni‐rich NCM cathode interfaces. In the Li/Ni‐rich NCM battery, the addition of 1 wt% adiponitrile in 0.8 m LiTFSI + 0.2 M LiDFOB + 0.05 M LiPF6 dissolved in EMC/FEC = 3:1 electrolyte helps to produce a conductive and robust Li anode/electrolyte interface, while strong coordination between Ni4+ on the delithiated Ni‐rich cathode and nitrile group in adiponitrile reduces parasitic reactions between the electrolyte and Ni‐rich cathode surface. Therefore, upon using 1 wt% adiponitrile, the Li/full concentration gradient Li[Ni0.73Co0.10Mn0.15Al0.02]O2 battery achieves an unprecedented cycle retention of 75% over 830 cycles under high‐capacity loading of 1.8 mAh cm?2 and fast charge–discharge time of 2 h. This work marks an important step in the development of high‐performance Li/Ni‐rich NCM batteries with efficient electrolyte additives.  相似文献   

15.
Aqueous Zn ion batteries (ZIBs) are one of the most promising battery chemistries for grid-scale renewable energy storage. However, their application is limited by issues such as Zn dendrite formation and undesirable side reactions that can occur in the presence of excess free water molecules and ions. In this study, a nanocellulose-carboxymethylcellulose (CMC) hydrogel electrolyte is demonstrated that features stable cycling performance and high Zn2+ conductivity (26 mS cm−1), which is attributed to the material's strong mechanical strength (≈70 MPa) and water-bonding ability. With this electrolyte, the Zn-metal anode shows exceptional cycling stability at an ultra-high rate, with the ability to sustain a current density as high as 80 mA cm−2 for more than 3500 cycles and a cumulative capacity of 17.6 Ah cm−2 (40 mA cm−2). Additionally, side reactions, such as hydrogen evolution and surface passivation, are substantially reduced due to the strong water-bonding capacity of the CMC. Full Zn||MnO2 batteries fabricated with this electrolyte demonstrate excellent high-rate performance and long-term cycling stability (>500 cycles at 8C). These results suggest the cellulose-CMC electrolyte as a promising low-cost, easy-to-fabricate, and sustainable aqueous-based electrolyte for ZIBs with excellent electrochemical performance that can help pave the way toward grid-scale energy storage for renewable energy sources.  相似文献   

16.
Sodium-based dual-ion batteries (SDIBs) have attracted increasing research interests in energy storage systems because of their advantages of high operating voltage and low cost. However, exploring desirable anode materials with high capacity and stable structures remains a great challenge. Here, an elaborate design is reported, starting from well-organized MoSe2 nanorods and introducing metal-organic frameworks, which simultaneously forms a bimetallic selenide/carbon composite with coaxial structure via electronegativity induction. By rationally adjusting the vacancy concentration and combining heterostructure engineering, the optimized MoSe2-x/ZnSe@C as anode material for Na-ion batteries achieves rapid electrochemical kinetics and satisfactory reversible capacities. The systematic electrochemical kinetic analyses combined with theoretical calculations further unveil the synergistic effect of Se-vacancies and heterostructure for the enhanced sodium storage, which not only induces more reversible Na+ storage sites but also improves the pseudocapacitance and reduce charge transfer resistance, thereby providing a great contribution to accelerating reaction kinetics. Furthermore, the as-constructed SDIB full cell based on the MoSe2-x/ZnSe@C anode and the expanded graphite cathode demonstrates impressively excellent rate performance (131 mAh g−1 at 4.0 A g−1) and ultralong cycling life over 1000 cycles (100 mAh g−1 at 1.0 A g−1), demonstrating its practical applicability in a wide range of sodium-based energy storage devices.  相似文献   

17.
Lithium/thionyl chloride (Li/SOCl2) primary batteries are appealing power solutions because of their remarkable electrochemical performances. However, their mass applications are hindered by the challenges in sustainability, cost and safety concerns owing to the employed Li chemistry. Here, magnesium (Mg) chemistry is shown as a promising alternative through synergistic optimization of electrolyte solvation and electrode reaction kinetics. The first Mg/SOCl2 primary battery yields surprisingly high specific capacities up to ≈14 000 mAh g−1 at a decent discharge voltage of ≈1.67 V, which outperforms the state-of-the-art Mg-based primary batteries. In addition, it retains almost 100% of the original capacity after 20-day reservation. The impressive battery performances are originated from the stabilized MgCl2 formation on high-surface-area carbon cathode and suppressed Mg anode corrosion via the Mg-induced solvation effect. Mg/SOCl2 primary batteries are promising candidates for low-cost and recyclable power supplies, and they thus open new avenues for the development of sustainable battery chemistries.  相似文献   

18.
A shape-variable aqueous secondary battery operating at low temperature is developed using Ga68In22Sn10 (wt%) as a liquid metal anode and a conductive polymer (polyaniline (PANI)) cathode. In the GaInSn alloy anode, Ga is the active component, while Sn and In increase the acid resistance and decrease the eutectic point to -19 °C. This enables the use of strongly acidic aqueous electrolytes (here, pH 0.9), thereby improving the activity and stability of the PANI cathode. Consequently, the battery exhibits excellent electrochemical performance and mechanical stability. The GaInSn–PANI battery operates via a hybrid mechanism of Ga3+ stripping/plating and Cl insertion/extraction and delivers a high reversible capacity of over 223.9 mAh g−1 and an 80.3% retention rate at 0.2 A g−1 after 500 cycles, as well as outstanding power and energy densities of 4300 mW g−1 and 98.7 mWh g−1, respectively. Because of the liquid anode, the battery without packaging can be deformed with a small force of several millinewtons without any capacity loss. Moreover, at approximately -5 °C, the battery delivers a capacity of 67.8 mAh g−1 at 0.2 A g−1 with 100% elasticity. Thus, the battery is promising as a deformable energy device at low temperatures and in demanding environments.  相似文献   

19.
Rechargeable Mg batteries promise low-cost, safe, and high-energy alternatives to Li-ion batteries. However, the high polarization strength of Mg2+ leads to its strong interaction with electrode materials and electrolyte molecules, resulting in sluggish Mg2+ dissociation and diffusion as well as insufficient power density and cycling stability. Here an aqueous Mg2+-based dual-ion battery is reported to bypass the penalties of slow dissociation and solid-state diffusion. This battery chemistry utilizes fast redox reactions on the polymer electrodes, i.e., anion (de)doping on the polyaniline (PANI) cathode and (de)enolization upon incorporating Mg2+ on the polyimide anode. The kinetically favored and stable electrodes depend on designing a saturated aqueous electrolyte of 4.5 m Mg(NO3)2. The concentrated electrolyte suppresses the irreversible deprotonation reaction of the PANI cathode to enable excellent stability (a lifespan of over 10 000 cycles) and rate performance (33% capacity retention at 500 C) and avoids the anodic parasitic reaction of nitrate reduction to deliver the stable polyimide anode (86.2% capacity retention after 6000 cycles). The resultant full Mg2+-based dual-ion battery shows a high specific power of 10 826 W kg−1, competitive with electrochemical supercapacitors. The electrolyte and electrode chemistries elucidated in this study provide an alternative approach to developing better-performing Mg-based batteries.  相似文献   

20.
Proton batteries have been considered as an innovative energy storage technology owing to their high safety and cost-effectiveness. However, the development of fast-charging proton batteries with high energy/power density is greatly limited by feasible material selection. Here, the pre-protonated vanadium hexacyanoferrate (H-VHCF) is developed as a proton cathode material to alleviate the capacity loss of proton-free electrode materials during electrochemical tests. The pre-protonation process realizes fast and long-distance transport of protons by shortening diffusion path and reducing migration barriers. Benefitting from the enhanced hydrogen bonding network combined with dual redox reactions of V and Fe in protonated H-VHCF cathode, a high energy density of 74 Wh kg−1 at 1.1 kW kg−1, and a maximum power density of 54 kW kg−1 at 65 Wh kg−1 is achieved for the asymmetric proton batteries coupling with MoO3/MXene anode. Proton transport and double oxidation-reduction center are verified by theoretical calculations and ex situ experimental measurements. Considering the anti-freezing availability of proton batteries, 82.5% of its initial capacity is maintained after 10000 cycles under −40 °C at 0.5 A g−1. As a proof-of-concept, flexible device fabricated by optimized electrodes and hydrogel electrolytes can power up a light-emitting diode even under a bent state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号