共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper deals with the multi-formation control problem for nonlinear leader-following multi-agent systems. Both the fixed topology case and the switching topology case are considered. The neighbor-based multi-formation control protocols are proposed under the assumption that for one subgroup, the total information received from other subgroups is zero. Then, based on the Lyapunov stability theory combined with the algebraic graph theory, sufficient conditions are established to ensure that the leader-following multi-agent systems with nonlinear dynamics can reach and maintain the desired multi-formation control. Finally, simulation examples are provided to illustrate the effectiveness of the theoretical results. 相似文献
2.
An analytical H2 controller design approach of homogeneous multi-agent systems with time delays is presented to improve consensus performance. Firstly, a closed-loop multi-input multi-output framework in frequency domain is introduced, and a consensus tracking condition is given. Secondly, the decomposition method is utilized to simplify the analysis of internal stability and H2 performance index of the whole system to a set of independent optimization problems. Finally, the H2 optimal controller can be computed from all the stabilizing controllers. The contributions of the new approach are that the design procedure is conducted analytically for arbitrary delayed multi-agent systems, and a simple quantitative tuning way is developed to trade off the nominal performance and robustness. The simulation examples show the effectiveness of the proposed control strategy. 相似文献
3.
In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. 相似文献
4.
To investigate the energy consumption involved in a sampled-data consensus process, the problem of guaranteed cost consensus for sampled-data linear multi-agent systems is considered. By using an input delay approach, an equivalent system is constructed to convert the guaranteed cost consensus problem to a guaranteed cost stabilization problem. A sufficient condition for guaranteed cost consensus is given in terms of linear matrix inequalities (LMIs), based on a refined time-dependent Lyapunov functional analysis. Reduced-order protocol design methodologies are proposed, with further discussions on determining sub-optimal protocol gain and enlarging allowable sampling interval bound made as a complement. Simulation results illustrate the effectiveness of the theoretical results. 相似文献
5.
The state inequality constraints have been hardly considered in the literature on solving the nonlinear optimal control problem based the adaptive dynamic programming (ADP) method. In this paper, an actor-critic (AC) algorithm is developed to solve the optimal control problem with a discounted cost function for a class of state-constrained nonaffine nonlinear systems. To overcome the difficulties resulting from the inequality constraints and the nonaffine nonlinearities of the controlled systems, a novel transformation technique with redesigned slack functions and a pre-compensator method are introduced to convert the constrained optimal control problem into an unconstrained one for affine nonlinear systems. Then, based on the policy iteration (PI) algorithm, an online AC scheme is proposed to learn the nearly optimal control policy for the obtained affine nonlinear dynamics. Using the information of the nonlinear model, novel adaptive update laws are designed to guarantee the convergence of the neural network (NN) weights and the stability of the affine nonlinear dynamics without the requirement for the probing signal. Finally, the effectiveness of the proposed method is validated by simulation studies. 相似文献
6.
In this study, an adaptive fuzzy prescribed performance control approach is developed for a class of uncertain multi-input and multi-output (MIMO) nonlinear systems with unknown control direction and unknown dead-zone inputs. The properties of symmetric matrix are exploited to design adaptive fuzzy prescribed performance controller, and a Nussbaum-type function is incorporated in the controller to estimate the unknown control direction. This method has two prominent advantages: it does not require the priori knowledge of control direction and only three parameters need to be updated on-line for this MIMO systems. It is proved that all the signals in the resulting closed-loop system are bounded and that the tracking errors converge to a small residual set with the prescribed performance bounds. The effectiveness of the proposed approach is validated by simulation results. 相似文献
7.
This paper presents an adaptive iterative learning control scheme for a class of nonlinear systems with unknown time-varying delays and control direction preceded by unknown nonlinear backlash-like hysteresis. Boundary layer function is introduced to construct an auxiliary error variable, which relaxes the identical initial condition assumption of iterative learning control. For the controller design, integral Lyapunov function candidate is used, which avoids the possible singularity problem by introducing hyperbolic tangent funciton. After compensating for uncertainties with time-varying delays by combining appropriate Lyapunov-Krasovskii function with Young's inequality, an adaptive iterative learning control scheme is designed through neural approximation technique and Nussbaum function method. On the basis of the hyperbolic tangent function's characteristics, the system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapunov-like composite energy function (CEF) in two cases, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach. 相似文献
8.
A robust sliding mode control that follows a self-tuning law for nonlinear systems possessing uncertain parameters is proposed. The adjustable control gain and a bipolar sigmoid function are on-line tuned to force the tracking error to approach zero. Control system stability is ensured using the Lyapunov method. Both simulation and experimental application of a planetary gear type inverted pendulum control system verify the effectiveness of the developed approach. 相似文献
10.
This paper proposes adaptive control designs for vehicle active suspension systems with unknown nonlinear dynamics (e.g., nonlinear spring and piece-wise linear damper dynamics). An adaptive control is first proposed to stabilize the vertical vehicle displacement and thus to improve the ride comfort and to guarantee other suspension requirements (e.g., road holding and suspension space limitation) concerning the vehicle safety and mechanical constraints. An augmented neural network is developed to online compensate for the unknown nonlinearities, and a novel adaptive law is developed to estimate both NN weights and uncertain model parameters (e.g., sprung mass), where the parameter estimation error is used as a leakage term superimposed on the classical adaptations. To further improve the control performance and simplify the parameter tuning, a prescribed performance function (PPF) characterizing the error convergence rate, maximum overshoot and steady-state error is used to propose another adaptive control. The stability for the closed-loop system is proved and particular performance requirements are analyzed. Simulations are included to illustrate the effectiveness of the proposed control schemes. 相似文献
11.
Observer-based adaptive fuzzy-neural control for a class of uncertain nonlinear systems with unknown dead-zone input 总被引:1,自引:0,他引:1
Based on the universal approximation property of the fuzzy-neural networks, an adaptive fuzzy-neural observer design algorithm is studied for a class of nonlinear SISO systems with both a completely unknown function and an unknown dead-zone input. The fuzzy-neural networks are used to approximate the unknown nonlinear function. Because it is assumed that the system states are unmeasured, an observer needs to be designed to estimate those unmeasured states. In the previous works with the observer design based on the universal approximator, when the dead-zone input appears it is ignored and the stability of the closed-loop system will be affected. In this paper, the proposed algorithm overcomes the affections of dead-zone input for the stability of the systems. Moreover, the dead-zone parameters are assumed to be unknown and will be adjusted adaptively as well as the sign function being introduced to compensate the dead-zone. With the aid of the Lyapunov analysis method, the stability of the closed-loop system is proven. A simulation example is provided to illustrate the feasibility of the control algorithm presented in this paper. 相似文献
12.
In this paper, a new Adaptive Fuzzy Predictive Sliding Mode Control (AFP-SMC) is presented for nonlinear systems with uncertain dynamics and unknown input delay. The control unit consists of a fuzzy inference system to approximate the ideal linearization control, together with a switching strategy to compensate for the estimation errors. Also, an adaptive fuzzy predictor is used to estimate the future values of the system states to compensate for the time delay. The adaptation laws are used to tune the controller and predictor parameters, which guarantee the stability based on a Lyapunov-Krasovskii functional. To evaluate the method effectiveness, the simulation and experiment on an overhead crane system are presented. According to the obtained results, AFP-SMC can effectively control the uncertain nonlinear systems, subject to input delays of known bound. 相似文献
13.
Adaptive fuzzy approach for a class of uncertain nonlinear systems in strict-feedback form 总被引:1,自引:1,他引:1
Adaptive fuzzy control is proposed for a class of affine nonlinear systems in strict-feedback form with unknown nonlinearities. The unknown nonlinearities include two types of nonlinear functions: one satisfies the "triangularity condition" and can be directly approximated by fuzzy logic system, while the other is assumed to be partially known and consists of parametric uncertainties. Takagi-Sugeno type fuzzy approximators are used to approximate unknown system nonlinearities and the design procedure is a combination of adaptive backstepping and generalized small gain design techniques. It is proved that the proposed adaptive control scheme can guarantee the uniformly ultimately bounded (UBB) stability of the closed-loop systems. Simulation studies are shown to illustrate the effectiveness of the proposed approach. 相似文献
14.
15.
This paper addresses the problem of global output feedback control for a class of nonlinear time-delay systems. The nonlinearities are dominated by a triangular form satisfying linear growth condition in the unmeasurable states with an unknown growth rate. With a change of coordinates, a linear-like controller is constructed, which avoids the repeated derivatives of the nonlinearities depending on the observer states and the dynamic gain in backstepping approach and therefore, simplifies the design procedure. Using the idea of universal control, we explicitly construct a universal-type adaptive output feedback controller which globally regulates all the states of the nonlinear time-delay systems. 相似文献
16.
Modeling and control compensation of nonlinear friction using adaptive fuzzy systems 总被引:2,自引:0,他引:2
System performance in terms of control accuracy and stability is usually negatively affected by friction occurrences in mechanical systems. Thus, it is important to model the friction properly so that it can be used in controller design. This paper employs adaptive fuzzy systems to approximate unknown nonlinear friction functions, and applies the estimation of friction in proportional-derivative (PD) control law to enhance the control performance. On the basis of Lyapunov stability theory, a bound of tracking errors of the closed-loop control system is derived. Techniques proposed in this paper have been applied to a typical motion control system for simulation studies. The results obtained demonstrate that our proposed method in this paper has good potential in controlling many mechanical systems with unknown nonlinear friction. 相似文献
17.
Henzeh Leeghim In-Ho Seo Hyochoong Bang 《Journal of Mechanical Science and Technology》2008,22(6):1073-1083
An adaptive feedback linearization technique combined with the neural network is addressed to control uncertain nonlinear
systems. The neural network-based adaptive control theory has been widely studied. However, the stability analysis of the
closed-loop system with the neural network is rather complicated and difficult to understand, and sometimes unnecessary assumptions
are involved. As a result, unnecessary assumptions for stability analysis are avoided by using the neural network with input
normalization technique. The ultimate boundedness of the tracking error is simply proved by the Lyapunov stability theory.
A new simple update law as an adaptive nonlinear control is derived by the simplification of the input normalized neural network
assuming the variation of the uncertain term is sufficiently small. 相似文献
18.
In this paper, a model predictive control scheme with guaranteed closed-loop asymptotic stability is proposed for a class of constrained nonlinear time-delay systems with discrete and distributed delays. A suitable terminal cost functional and also an appropriate terminal region are utilized to achieve asymptotic stability. To determine the terminal cost, a locally asymptotically stabilizing controller is designed and an appropriate Lyapunov-Krasoskii functional of the locally stabilized system is employed as the terminal cost. Furthermore, an invariant set for locally stabilized system which is established by using the Razumikhin Theorem is used as the terminal region. Simple conditions are derived to obtain terminal cost and terminal region in terms of Bilinear Matrix Inequalities. The method is illustrated by a numerical example. 相似文献
19.
In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. 相似文献
20.
This paper presents a nonlinear model-based iterative learning control procedure to achieve accurate tracking control for nonlinear lumped mechanical continuous-time systems. The model structure used in this iterative learning control procedure is new and combines a linear state space model and a nonlinear feature space transformation. An intuitive two-step iterative algorithm to identify the model parameters is presented. It alternates between the estimation of the linear and the nonlinear model part. It is assumed that besides the input and output signals also the full state vector of the system is available for identification. A measurement and signal processing procedure to estimate these signals for lumped mechanical systems is presented. The iterative learning control procedure relies on the calculation of the input that generates a given model output, so-called offline model inversion. A new offline nonlinear model inversion method for continuous-time, nonlinear time-invariant, state space models based on Newton's method is presented and applied to the new model structure. This model inversion method is not restricted to minimum phase models. It requires only calculation of the first order derivatives of the state space model and is applicable to multivariable models. For periodic reference signals the method yields a compact implementation in the frequency domain. Moreover it is shown that a bandwidth can be specified up to which learning is allowed when using this inversion method in the iterative learning control procedure. Experimental results for a nonlinear single-input-single-output system corresponding to a quarter car on a hydraulic test rig are presented. It is shown that the new nonlinear approach outperforms the linear iterative learning control approach which is currently used in the automotive industry on durability test rigs. 相似文献