首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a nanoplasmonic enhanced ZnO/Si heterojunction metal–semiconductor–metal (MSM) photodetector (PD). By depositing different thicknesses of Ag thin film and annealing at a moderate temperature, well-defined silver (Ag) nanoparticles (NPs) with different diameters, densities, and size distributions were produced on the surface of ZnO/Si MSM photodetector devices. By tuning the characteristics of these NPs, a higher-performance ZnO/Si MSM photodetector has been realized. The photocurrent of the detector with NPs was increased by 160% to 680%, depending on the applied voltage. The spectral photocurrent enhancement by a factor of 7 to 18 was broadband from 350 nm to 850 nm.  相似文献   

2.
Al0.4Ga0.6N metal–semiconductor–metal photodetectors on epitaxial laterally overgrown (ELO) AlN/sapphire templates show anisotropic device characteristics depending on the orientation of the electrode stripes with respect to the stripe pattern onto which the underlying ELO AlN buffer layers have been grown. With electrodes perpendicular to the stripes, a quantum efficiency (QE) of ~140 was found for 20-V bias at room-temperature. This gain is explained by carrier transport along channels with increased Ga content resulting from faceted growth at the steps of the ELO template. The resulting potential barrier is confirmed by the activation energy found for the temperature dependence of the QE. In contrast, photodetectors with electrodes running parallel to these channels do not show gain but have an enhanced QE at elevated bias voltage compared to devices on planar AlN buffer layers. This effect is attributed to different densities of threading dislocations in the absorber layer.  相似文献   

3.
Lithium is mainly extracted from brine and ores; however, current lithium mining methods require large amounts of chemicals, discharge many wastes, and can have serious environmental repercussions. Metal–organic framework (MOF)-based membranes have shown great potential in lithium extraction due to their uniform pore sizes, high porosities, and rich host–guest chemistry compared to other materials. In this review, the processes and disadvantages of current lithium extraction technologies are introduced. The structure features and corresponding design strategy of MOFs suitable for Li+ ion separations are presented. Following, recent advances of polycrystalline MOF membranes, mixed matrix membranes, and MOF channel membranes for lithium-ion separation are discussed in detail. Finally, opportunities for future developments and challenges in this emerging research field are presented.  相似文献   

4.
Metal–organic frameworks (MOFs) exhibit exceptional characteristics, including high porosity and adjustable properties, rendering them highly suitable for biomedical applications. Recently, researchers have directed their attention toward the integration of MOFs into composites for bone tissue regeneration (BTE), presenting distinct advantages over conventional substitutes. In this comprehensive review, the authors delve into the latest advancements concerning MOF-integrated composites for BTE. This exploration encompasses an examination of the properties of MOFs and the various synthesis techniques employed to fabricate these materials. Furthermore, the diverse applications of MOF-integrated composites in BTE are investigated, encompassing areas such as antibacterial properties, osteogenic differentiation, angiogenesis, and immunomodulation. By providing a comprehensive overview of the ongoing research on MOF-integrated composites for BTE, this study holds the promise of yielding innovative solutions within the realm of orthopedics.  相似文献   

5.
Solid-state polymer electrolytes (SPEs) with flexibility, easy processability, and low cost have been regarded as promising alternatives for conventional liquid electrolytes in next-generation high-safety lithium metal batteries. However, SPEs generally suffer poor strength to block Li dendrite growth during the charge/discharge process, which severely limits their wide practical applications. Here, a rational design of 3D cross-linked network asymmetric SPE modified with a metal–organic framework (MOF) layer on one side is proposed and prepared through an in-situ polymerization process. In such unique asymmetric SPEs, the nanoscale MOF layer acts as a shield that effectively suppresses the growth of Li dendrites and regulates the uniform Li+ transport, and the polymer electrolyte can be scattered in the whole cell to endow the smooth transmission of Li+. As a result, the asymmetric SPE exhibits high ionic conductivity, wide electrochemical window, high thermal stability and safety, which endows the Li/Li symmetrical cell with outstanding cyclic stability (operate well over 800 h at a current density of 0.1 mA cm−2 for the capacity of 0.1 mAh cm−2).  相似文献   

6.
Resistive switching (RS) characteristics are investigated in fabricated Al-doped HfO2 metal–insulator–metal devices. It is proposed that oxygen vacancies in Al-doped HfO2 devices play a key role as electron trap centers, leading to the forming-free reversible bipolar resistance switching behavior. The conduction mechanism can be explained by electron trapping and detrapping from such oxygen vacancy-related traps in the Al-doped HfO2 films and is dominated by a trap-controlled space-charge-limited current (SCLC) mechanism. A large RS ratio (~106) and excellent retention characteristics are also observed at room temperature as well as at 85°C. Such devices have potential for application in nonvolatile random-access memory.  相似文献   

7.
Levin  R. V.  Vlasov  A. S.  Smirnov  A. N.  Pushnyi  B. V. 《Semiconductors》2019,53(12):1563-1567
Semiconductors - The results of studies of nominally undoped epitaxial p-GaSb layers grown by metal–organic vapor-phase epitaxy at a ratio TMSb/TEGa in the range from 1 to 50 are reported. At...  相似文献   

8.
Enhancing ionic conductivity of quasi-solid-state electrolytes (QSSEs) is one of the top priorities, while conventional metal–organic frameworks (MOFs) severely impede ion migration due to their abundant grain boundaries. Herein, ZIF-4 glass, a subset of MOFs, is reported as QSSEs (LGZ) for lithium-metal batteries. With lean Li content (0.12 wt%) and solvent amount (19.4 wt%), LGZ can achieve a remarkable ion conductivity of 1.61 × 10−4 S cm−1 at 30 °C, higher than those of crystalline ZIF-4-based QSSEs (LCZ, 8.21 × 10−5 S cm−1) and the reported QSSEs containing high Li contents (0.32–5.4 wt%) and huge plasticizer (30–70 wt%). Even at −56.6 °C, LGZ can still deliver a conductivity of 5.96 × 10−6 S cm−1 (vs 4.51 × 10−7 S cm−1 for LCZ). Owing to the grain boundary-free and isotropic properties of glassy ZIF-4, the facilitated ion conduction enables a homogeneous ion flux, suppressing Li dendrites. When paired with LiFePO4 cathode, LGZ cell demonstrates a prominent cycling capacity of 101 mAh g−1 for 500 cycles at 1 C with the near-utility retention, outperforming LCZ (30.7 mAh g−1) and the explored MOF-/covalent–organic frameworks (COF)-based QSSEs. Hence, MOF glasses will be a potential platform for practical quasi-solid-state batteries in the future.  相似文献   

9.
As the power-conversion efficiency (PCE) of organic–inorganic lead halide perovskite solar cells (PSCs) is approaching the theoretical maximum, the most crucial issue concerns long-term ambient stability. Here, the application of PCN-224 quantum dots (QDs) is reported, a typical Zr-based porphyrinic metal–organic framework (MOF), to enhance the ambient stability of PSCs. PCN-224 QDs with abundant Lewis-base groups (e.g., CO, C−N, CN) contribute to high-quality perovskite films with enlarged grain size and reduced defect density by interaction with under-coordinated Pb2+. Meanwhile, PCN-224 QDs enable the well-matched energy level at the perovskite/hole transport layer (HTL) interface, thereby facilitating hole extraction and transport. More importantly, PCN-224 QDs-treated HTL can capture Li+ from bis(trifluoromethanesulfonyl)imide additive, leading to the reduced aggregation and less direct contact with moisture for hygroscopic Li-TFSI. Moreover, PCN-224 QDs mitigated Li+ ion migration into the perovskite layer, thus avoiding the formation of deleterious defects. The resultant devices yield a champion PCE of 22.51%, along with substantially improved durability, including humidity, thermal and light soaking stabilities. The findings provide a new approach toward efficient and stable PSCs by applying MOF QDs.  相似文献   

10.
In this work, a new feature-scale model is proposed for investigating the interaction between the wafer pattern and individual pad asperities in the process of chemical mechanical planarization (CMP). Based on the contact mechanics equation and the modified Greenwood–Williamson (GW) model which captures the evolution of feature curvature and the modification of the pad asperity height distribution, the discrete convolution and fast Fourier transform (DC-FFT) technique is adopted and combined with the Picard iteration method to calculate the direct contact pressure distribution between the wafer surface and the polishing pad. The computed pressure is then used to determine the local removal rate of the underlying patterns and predict the evolution of the wafer surface profile. Furthermore, the method is extended to capture the metal dishing as the feature size changes. It is shown that the present model can avoid the false simulated results produced by directly applying the original GW model for CMP when the feature size approaches zero. Otherwise, the calculated surface profile and dishing values of pattern geometries are in good agreement with the experimental data. Therefore, this model can not only be used to simulate the evolution of the wafer surface for global planarization at lower technology nodes, but can also be applied to provide some basic design rules for improving the process parameters and reducing the time and cost for developing new architectures.  相似文献   

11.
The selective removal of one ligand in mixed-ligand MOFs upon thermolysis provides a powerful strategy to introduce additional mesopores without affecting the overall MOF structure. By varying the initial ligand ratio, MOFs of the MIL-125-Ti family with two distinct hierarchical pore architectures are synthesized, resembling either large cavities or branching fractures. The performance of the resulting hierarchically porous MOFs is evaluated toward the adsorptive removal of glyphosate (N-(phosphonomethyl)glycine) from water, and the adsorption kinetics and mechanism are examined. Due to their strong affinity for phosphoric groups, the numerous Ti–OH groups resulting from the selective ligand removal act as natural anchor points for effective glyphosate uptake. The relationships between contact duration, glyphosate concentration, and adsorbent dosage are investigated, and the impact of these parameters on the effectiveness of glyphosate removal from contaminated water samples is examined. The introduction of additional mesopores has increased the adsorption capacities by nearly 3 times with record values exceeding 440.9 mg g−1, which ranks these MOFs among the best-reported adsorbents.  相似文献   

12.
This paper reports the successful use of ZnSe/ZnS/ZnMgS/ZnS/ZnSe as a gate insulator stack for an InGaAs-based metal–oxide–semiconductor (MOS) device, and demonstrates the threshold voltage shift required in nonvolatile memory devices using a floating gate quantum dot layer. An InGaAs-based nonvolatile memory MOS device was fabricated using a high-κ II–VI tunnel insulator stack and self-assembled GeO x -cladded Ge quantum dots as the charge storage units. A Si3N4 layer was used as the control gate insulator. Capacitance–voltage data showed that, after applying a positive voltage to the gate of a MOS device, charges were being stored in the quantum dots. This was shown by the shift in the flat-band/threshold voltage, simulating the write process of a nonvolatile memory device.  相似文献   

13.
Shobolova  T. A.  Mokeev  A. S.  Rudakov  S. D.  Obolensky  S. V.  Shobolov  E. L. 《Semiconductors》2021,55(12):885-890
Semiconductors - The characteristics of two design-technology versions of a silicon metal–oxide–semiconductor (MOS) silicon on insulator (SOI) transistor with a source-aligned substrate...  相似文献   

14.
Designing efficient electrocatalysts based on metal–organic framework (MOF) nanosheet arrays (MOFNAs) with controlled active heterointerface for the oxygen evolution reaction (OER) is greatly desired yet challenging. Herein, a facile strategy for the synthesis of MOF-based nanosheet arrays (γ-FeOOH/Ni-MOFNA) is developed with abundant heterointerfaces between Ni-MOF and γ-FeOOH nanosheets by introducing linker defects to the former. The experimental and theoretical results show the key role of linker defects in inducing the growth of secondary γ-FeOOH nanosheets onto the surface of Ni-MOFNAs, which further leads to the formation of interfacial Ni/Fe dual sites with high oxygen evolution activity. Notably, the resulting γ-FeOOH/Ni-MOFNA exhibits excellent OER performance with low overpotentials of 193 and 222 mV at 10 and 100 mA cm−2, respectively. Furthermore, the study of the structure–performance relationship of MOF-based heterostructures reveals that Ni sites at the interface of the γ-FeOOH/Ni-MOFNA have higher activity than those at the interface of NiFe layered double hydroxide and Ni-MOFNA. This study provides a new prospect on heterostructured electrocatalysts with highly active sites for enhanced OER.  相似文献   

15.
Combining metal nanoparticles (NPs) featured with localized surface plasmon resonance (LSPR) with metal–organic framework (MOF)-based photocatalysts is a novel means for achieving efficient separation of electron–hole pairs. Herein, the Au@NH2-UiO-66/CdS composites are successfully synthesized by encapsulating Au NPs with LSPR into the NH2-UiO-66 nanocage, further growing CdS NPs on the surface of the NH2-UiO-66, which exhibits higher photocatalytic activity in hydrogen evolution reaction under visible-light irradiation than that of NH2-UiO-66/CdS and CdS, respectively. Transient absorption measurements reveal that MOF is not only a transit station for electrons generated from CdS to Au, but also a receiver for hot electrons generated from plasmonic Au in Au@MOF/CdS composites. Thus, the LSPR-induced hot electron transfer from Au NPs is an important manifestation to prolong the carrier lifetime and enhance the photocatalytic performance. This work provides insights into investigating the photoinduced carrier dynamics of nanomaterials with LSPR effects for enhancing the MOF-based photocatalytic performance.  相似文献   

16.
A conductive phosphonate metal–organic framework (MOF), [{Cu(H2O)}(2,6-NDPA)0.5] (NDPA = naphthalenediphosphonic acid), which contains a 2D inorganic building unit (IBU) comprised of a continuous edge-sharing sheet of copper phosphonate polyhedra is reported. The 2D IBUs are connected to each other via polyaromatic 2,6-NDPA's, forming a 3D pillared-layered MOF structure. This MOF, known as TUB40, has a narrow band gap of 1.42 eV, a record high average electrical conductance of 2 × 102 S m−1 at room temperature based on single-crystal conductivity measurements, and an electrical conductance of 142 S m−1 based on a pellet measurement. Density functional theory (DFT) calculations reveal that the conductivity is due to an excitation from the highest occupied molecular orbital on the naphthalene-building unit to the lowest unoccupied molecular orbital on the copper atoms. Temperature-dependent magnetization measurements show that the copper atoms are antiferromagnetically coupled at very low temperatures, which is also confirmed by the DFT calculations. Due to its high conductance and thermal/chemical stability, TUB40 may prove useful as an electrode material in supercapacitors.  相似文献   

17.
Advances in metal–organic frameworks (MOFs) are stimulating interest in water-evaporation induced electricity generation. Establishing design principles for desirable MOFs and revealing the structure-activity relationship is essential to development of this field. Around this key issue, herein the concept of “hierarchical oriented MOFs” is proposed and the Cu(BDC-OH) MOFs are organized into hierarchical oriented assemblies by successively using methods of hydrolysis, anion exchange reaction, and heteroepitaxy growth. It is discovered that this hierarchical oriented Cu(BDC-OH) assemblies-based generator containing long-ranged ordered microporous channels exhibits a voltage of 0.6 V and electricity output of 1.56 nW cm–2 in the natural state of water evaporation. Finite element analysis and density functional calculation elucidate that hierarchical oriented structure of Cu(BDC-OH) MOFs with certain surface charge density have an “aggregation effect,” dominating the final output voltages. This work not only offers valuable theoretical guidance for exploring self-assembly of MOFs superstructures and water-evaporation induced electricity generation, but also may open interesting perspectives for understanding some fundamental questions about structure-activity relationship in MOFs materials science.  相似文献   

18.
A model that combines the extended Hubbard model involving intra-atomic and interatomic Coulomb repulsion and the Holstein model describing the interaction of a band electron with an Einstein phonon is proposed. Three regions of the phase diagram are considered. The regions correspond to the states of spin- and charge-density waves and the state uniform in spin and charge. Numerical estimations for the Rh, Ir, and Pt substrates show that Coulomb interaction plays a leading part, making possible transitions from the uniform state to the states of spin- and charge-density waves.  相似文献   

19.
Although remarkable progress on luminescent materials is made in advanced optical information storage and anti-counterfeiting applications, many challenges still remain in these fields. Currently, most luminescent materials are based on a single photoluminescent model that can be easily imitated by substitutes. In this work, a series of multimodal emission lanthanide-based metal–organic frameworks (MOFs) are developed, where they emit red and green light originating from Eu3+ and Tb3+ under ultraviolet light irradiation. Meanwhile, under 980 nm near-infrared laser irradiation, these MOFs show cyan upconversion cooperative luminescence derived from Yb3+ and characteristic upconversion luminescence from lanthanide activators (Eu3+, Tb3+, or Ho3+), respectively. Based on the integrated optical functionality, the functional information storage applications are successfully designed, which indicates that multimodal emission features can be easily detected under ultraviolet lamps (254 or 393 nm) or 980 nm near-infrared laser. And, the unique optical features show a high level of security in the advanced information storage application, which would be sufficiently complex to be forged.  相似文献   

20.
In this work, mixing and co-gelation of Au nanoparticles (NPs) and highly luminescent CdSe/CdS core/shell nanorods (NRs) are used as tools to obtain noble metal particle-decorated macroscopic semiconductor gel networks. The hybrid nature of the macrostructures facilitates the control over the optical properties: while the holes are trapped in the CdSe cores, the connected CdSe/CdS NRs support the mobility of excited electrons throughout the porous, hyperbranched gel networks. Due to the presence of Au NPs in the mixed gels, electron trapping in the gold NPs leads to a suppressed radiative recombination, namely, quenches the fluorescence in certain fragments of the multicomponent gel. The extent of fluorescence quenching can be influenced by the quantity of the noble metal domains. The optical properties are monitored as a function of the NR:NP ratio of a model system CdSe/CdS:Au. By this correlation, it demonstrates that the spatial extent of quenching initiated by a single Au NP exceeds the dimensions of one NR, which the Au is connected to (with a length of 45.8 nm ± 4.1 nm) and can reach the number of nine NRs per Au NP, which roughly corresponds to 400 nm of total electron travel distance within the network structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号