首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper the characteristic ratios and generalized time constant are defined for all-pole commensurate fractional order systems. The sufficient condition for stability of these systems in terms of their characteristic ratios is obtained. Also an analytical approach for characteristic ratio assignment (CRA) to have a non-overshooting fast closed loop step response is introduced. The proposed CRA method is then employed to design a fractional order controller. Computer simulation results are presented to illustrate the performance of the CRA based designed fractional order controllers.  相似文献   

2.
Fractional order PI and PID controllers are the most common fractional order controllers used in practice. In this paper, a simple analytical method is proposed for tuning the parameters of these controllers. The proposed method is useful in designing fractional order PI and PID controllers for control of complicated fractional order systems. To achieve the goal, at first a reduction technique is presented for approximating complicated fractional order models. Then, based on the obtained reduced models some analytical rules are suggested to determine the parameters of fractional order PI and PID controllers. Finally, numerical results are given to show the efficiency of the proposed tuning algorithm.  相似文献   

3.
In this paper, a novel concept of an interval type-2 fractional order fuzzy PID (IT2FO-FPID) controller, which requires fractional order integrator and fractional order differentiator, is proposed. The incorporation of Takagi-Sugeno-Kang (TSK) type interval type-2 fuzzy logic controller (IT2FLC) with fractional controller of PID-type is investigated for time response measure due to both unit step response and unit load disturbance. The resulting IT2FO-FPID controller is examined on different delayed linear and nonlinear benchmark plants followed by robustness analysis. In order to design this controller, fractional order integrator-differentiator operators are considered as design variables including input-output scaling factors. A new hybridized algorithm named as artificial bee colony-genetic algorithm (ABC-GA) is used to optimize the parameters of the controller while minimizing weighted sum of integral of time absolute error (ITAE) and integral of square of control output (ISCO). To assess the comparative performance of the IT2FO-FPID, authors compared it against existing controllers, i.e., interval type-2 fuzzy PID (IT2-FPID), type-1 fractional order fuzzy PID (T1FO-FPID), type-1 fuzzy PID (T1-FPID), and conventional PID controllers. Furthermore, to show the effectiveness of the proposed controller, the perturbed processes along with the larger dead time are tested. Moreover, the proposed controllers are also implemented on multi input multi output (MIMO), coupled, and highly complex nonlinear two-link robot manipulator system in presence of un-modeled dynamics. Finally, the simulation results explicitly indicate that the performance of the proposed IT2FO-FPID controller is superior to its conventional counterparts in most of the cases.  相似文献   

4.
快速刀具伺服分数阶PID控制仿真的研究   总被引:2,自引:0,他引:2  
利用分数阶PID控制,提出了一种新的快速刀具伺服(FTS)跟踪控制方法,以改善FTS的控制性能。根据差分进化算法,讨论了分数阶PID控制器的参数整定;通过数值仿真,考察了该方法的可行性和有效性。针对FTS的轨迹跟踪,根据响应时间、跟踪精度等指标,详细比较了分数阶PID控制与传统PID控制的性能。仿真结果表明,分数阶PID控制器的阶跃响应时间约为5×10-7s,是PID控制响应时间的42%,对频率为1 kHz,幅值为1μm的正弦信号的跟踪误差约为6 nm,是PID跟踪误差的50%,验证了基于分数阶PID控制器实现FTS轨迹跟踪控制的可行性和优越性。  相似文献   

5.
This paper introduces an integer order approximation method for numerical implementation of fractional order derivative/integrator operators in control systems. The proposed method is based on fitting the stability boundary locus (SBL) of fractional order derivative/integrator operators and SBL of integer order transfer functions. SBL defines a boundary in the parametric design plane of controller, which separates stable and unstable regions of a feedback control system and SBL analysis is mainly employed to graphically indicate the choice of controller parameters which result in stable operation of the feedback systems. This study reveals that the SBL curves of fractional order operators can be matched with integer order models in a limited frequency range. SBL fitting method provides straightforward solutions to obtain an integer order model approximation of fractional order operators and systems according to matching points from SBL of fractional order systems in desired frequency ranges. Thus, the proposed method can effectively deal with stability preservation problems of approximate models. Illustrative examples are given to show performance of the proposed method and results are compared with the well-known approximation methods developed for fractional order systems. The integer-order approximate modeling of fractional order PID controllers is also illustrated for control applications.  相似文献   

6.
A fractional active disturbance rejection control (FADRC) scheme is proposed to improve the performance of commensurate linear fractional order systems (FOS) and the robust analysis shows that the controller is also applicable to incommensurate linear FOS control. In FADRC, the traditional extended states observer (ESO) is generalized to a fractional order extended states observer (FESO) by using the fractional calculus, and the tracking differentiator plus nonlinear state error feedback are replaced by a fractional proportional-derivative controller. To simplify controller tuning, the linear bandwidth-parameterization method has been adopted. The impacts of the observer bandwidth ωo and controller bandwidth ωc on system performance are then analyzed. Finally, the FADRC stability and frequency-domain characteristics for linear single-input single-output FOS are analyzed. Simulation results by FADRC and ADRC on typical FOS are compared to demonstrate the superiority and effectiveness of the proposed scheme.  相似文献   

7.
Fractional order PID controllers benefit from an increasing amount of interest from the research community due to their proven advantages. The classical tuning approach for these controllers is based on specifying a certain gain crossover frequency, a phase margin and a robustness to gain variations. To tune the fractional order controllers, the modulus, phase and phase slope of the process at the imposed gain crossover frequency are required. Usually these values are obtained from a mathematical model of the process, e.g. a transfer function. In the absence of such model, an auto-tuning method that is able to estimate these values is a valuable alternative. Auto-tuning methods are among the least discussed design methods for fractional order PID controllers. This paper proposes a novel approach for the auto-tuning of fractional order controllers. The method is based on a simple experiment that is able to determine the modulus, phase and phase slope of the process required in the computation of the controller parameters. The proposed design technique is simple and efficient in ensuring the robustness of the closed loop system. Several simulation examples are presented, including the control of processes exhibiting integer and fractional order dynamics.  相似文献   

8.
The robotic manipulators are multi-input multi-output (MIMO), coupled and highly nonlinear systems. The presence of external disturbances and time-varying parameters adversely affects the performance of these systems. Therefore, the controller designed for these systems should effectively deal with such complexities, and it is an intriguing task for control engineers. This paper presents two-degree of freedom fractional order proportional-integral-derivative (2-DOF FOPID) controller scheme for a two-link planar rigid robotic manipulator with payload for trajectory tracking task. The tuning of all controller parameters is done using cuckoo search algorithm (CSA). The performance of proposed 2-DOF FOPID controllers is compared with those of their integer order designs, i.e., 2-DOF PID controllers, and with the traditional PID controllers. In order to show effectiveness of proposed scheme, the robustness testing is carried out for model uncertainties, payload variations with time, external disturbance and random noise. Numerical simulation results indicate that the 2-DOF FOPID controllers are superior to their integer order counterparts and the traditional PID controllers.  相似文献   

9.
Pan I  Das S  Gupta A 《ISA transactions》2011,50(4):557-572
The issues of stochastically varying network delays and packet dropouts in Networked Control System (NCS) applications have been simultaneously addressed by time domain optimal tuning of fractional order (FO) PID controllers. Different variants of evolutionary algorithms are used for the tuning process and their performances are compared. Also the effectiveness of the fractional order PI(λ)D(μ) controllers over their integer order counterparts is looked into. Two standard test bench plants with time delay and unstable poles which are encountered in process control applications are tuned with the proposed method to establish the validity of the tuning methodology. The proposed tuning methodology is independent of the specific choice of plant and is also applicable for less complicated systems. Thus it is useful in a wide variety of scenarios. The paper also shows the superiority of FOPID controllers over their conventional PID counterparts for NCS applications.  相似文献   

10.
This paper investigates the stability of n-dimensional fractional order nonlinear systems with commensurate order 0 <α<2. By using the Mittag-Leffler function, Laplace transform and the Gronwall–Bellman lemma, one sufficient condition is attained for the local asymptotical stability of a class of fractional order nonlinear systems with order lying in (0, 2). According to this theory, stabilizing a class of fractional order nonlinear systems only need a linear state feedback controller. Simulation results demonstrate the effectiveness of the proposed theory.  相似文献   

11.
A new method for linear system controller design is proposed whereby the closed-loop system achieves both robustness and fast response. The robustness performance considered here means the damping ratio of closed-loop system can keep its desired value under system parameter perturbation, while the fast response, represented by rise time of system output, can be improved by tuning the controller parameter. We exploit techniques from both the nonlinear systems control and the fractional order systems control to derive a novel nonlinear fractional order controller. For theoretical analysis of the closed-loop system performance, two comparison theorems are developed for a class of fractional differential equations. Moreover, the rise time of the closed-loop system can be estimated, which facilitates our controller design to satisfy the fast response performance and maintain the robustness. Finally, numerical examples are given to illustrate the effectiveness of our methods.  相似文献   

12.
Fractional order systems become increasingly popular due to their versatility in modelling and control applications across various disciplines. However, the bottleneck in deploying these tools in practice is related to their implementation on real-life systems. Numerical approximations are employed but their complexity no longer match the attractive simplicity of the original fractional order systems. This paper proposes a low-order, computationally stable and efficient method for direct approximation of general order (fractional order) systems in the form of discrete-time rational transfer functions, e.g. processes, controllers. A fair comparison to other direct discretization methods is presented, demonstrating its added value with respect to the state of art.  相似文献   

13.
Yeroglu C  Tan N 《ISA transactions》2011,50(3):461-472
This paper presents some classical controller design techniques for the fractional order case. New robust lag, lag-lead, PI controller design methods for control systems with a fractional order interval transfer function (FOITF) are proposed using classical design methods with the Bode envelopes of the FOITF. These controllers satisfy the robust performance specifications of the fractional order interval plant. In order to design a classical PID controller, an optimization technique based on fractional order reference model is used. PID controller parameters are obtained using the least squares optimization method. Different PID controller parameters that satisfy stability have been obtained for the same plant.  相似文献   

14.
模糊规则调整微分作用的PID控制方法   总被引:1,自引:0,他引:1  
PID控制器广泛应用于工业过程控制中 ,但对于非线性、时变不确定性的系统 ,常规 PID控制器难以获得满意效果。随着模糊控制理论的不断发展 ,利用其非线性特征 ,将其与 PID控制相结合 ,能有效改善 PID控制效果。设定值权系数的模糊逻辑整定 PID控制器 (FSW)方法在固定设定值权系数的基础上 ,用模糊推理方式计算“动态”的权系数 ,取得了一定的效果 ,但是仍存在一些问题。针对阶跃响应的上升及调整时间长、第一次超调后的反向振幅较大的缺点 ,采用模糊逻辑规则调整微分作用的改进方法 ,可以弥补上述不足。对一些典型对象进行仿真 ,结果表明该方法明显优于 Z- N方法 ,固定设定值权系数 b方法和 FSW方法  相似文献   

15.
This study proposes an analytical design method of fractional order proportional integral (FOPI) controllers for first order plus time delay (FOPTD) systems. Suggested technique obtains the general computation equations of controllers for such systems. These equations are used to tune controller parameters to meet specified frequency and phase properties to satisfy the stability of whole system. It is found that the designed controllers not only make the system stable, but also have positive effect on the performance and robustness of the system. Main contribution of the paper lays on this thought. There proposed a concept, “frequency frame” which encloses the curves between phase and gain crossover frequencies in Bode plot. Robustness of the control system can be improved by expanding or constricting the edges of this frame and flattening the curves inside the frame. Thus, any case that leads the system to instability can be avoided. Analytically derived equations are tested with proper examples and the results are shown illustratively. Advantages and disadvantages of the method are comparatively given.  相似文献   

16.
烧结混合料加水系统具有大滞后、模型复杂的特性,且客观环境中存在干扰因素,传统的控制方法很难取得理想的控制效果。分数阶PIλDu控制器比常规PID控制器多了两个可调参数,具有更好的控制效果。在分析分数阶微积分的基础上,给出了分数阶微积分的数字实现,用分数阶PIλDu控制代替常规PID控制,结合模糊控制,首次提出了一种针对烧结混合料加水系统的模糊自适应分数阶PIλDu控制方法,利用模糊逻辑实现分数阶PIλDu控制参数的在线调整。并用MATLAB/simulink进行建模仿真。仿真结果验证该控制算法的有效性,能取得较好的控制效果。  相似文献   

17.
This paper presents a decentralized PID controller design method for two input two output (TITO) systems with time delay using characteristic ratio assignment (CRA) method. The ability of CRA method to design controller for desired transient response has been explored for TITO systems. The design methodology uses an ideal decoupler to reduce the interaction. Each decoupled subsystem is reduced to first order plus dead time (FOPDT) model to design independent diagonal controllers. Based on specified overshoot and settling time, the controller parameters are computed using CRA method. To verify performance of the proposed controller, two benchmark simulation examples are presented. To demonstrate applicability of the proposed controller, experimentation is performed on real life interacting coupled tank level system.  相似文献   

18.
In this study, a novel fractional spline filter is proposed for surface metrology. The filter combines arbitrary order fractional spline function with variational principle, and is endowed with an adjustability of transition characteristic. If the order is high enough, the fractional spline filter can obtain more step-edge-like cut-off characteristic of the low-pass filter, and it can also realize the transmission characteristic of the Gaussian filter with high accuracy if the order equals to two. In addition, if the approximation parameter is set to zero, this filter will be simplified to a form of ordinary spline filter. Therefore, this fractional spline filter is called the universal spline filter. In order to reduce the computation time, the universal spline filter is calculated by a fast Fourier transform (FFT) algorithm. Furthermore, for practical use, an improved method prior to the FFT algorithm is proposed to suppress the end effect. Finally, the efficiency of the whole algorithm in comparison with the ordinary spline filter is demonstrated by the experiments, and it is also shown that the universal spline filter is able to alleviate the end effect significantly.  相似文献   

19.
提出了一种片上系统内嵌IP芯核测试响应的空间压缩方法。将内建自测试中的测试矢量(样式)计算器状态作为空间压缩器的输入,只需利用被测芯核的测试集及对应无故障响应便能实现零混叠空间压缩,具有经单步压缩便可实现最大压缩比的特点,故在测试时间开销上优于经两步(模式)压缩才能实现零混叠的方法[1~2 ]。该方法不要求测试矢量的排序[3] ,故对IP芯核的确定性测试及伪随机测试皆适用。  相似文献   

20.
A modified form of Smith predictor is designed for controlling unstable second order plus time delay (USOPTD) processes, with/without a zero. USOPTD process transfer functions arise in modeling of many chemical and biological systems, such as isothermal continuous stirred tank reactors (CSTR) carrying out autocatalytic reactions, crystallizers and non-isothermal CSTRs. The modified Smith predictor scheme requires the design of three controllers. Synthesis method is used for the design of the three controllers, and analytical formulas are given for these controllers. The method has two tuning parameters, and guidelines are provided for selecting the tuning parameters. Robust disturbance rejection performances are achieved. Different examples are considered, and simulation studies are given, to show the effectiveness of the proposed method. A significant improvement is obtained, when compared with recently reported methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号