首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nanoparticles (NPs)‐based diagnosis and phototherapy are emerging as the cutting‐edge technologies for detection and treatment of cancer but their applications are still limited since insufficient and heterogeneous NPs accumulation in cancer often causes recurrence. To overcome these limitations, multifunctional microbubbles (MBs) were constructed with 1, 1‐dioctadecyl‐3, 3, 3, 3‐tetramethylindotricarbocyanine iodide (DiR) and porphyrin grafted lipid (PGL). Both DiR and PGL self‐assembled as microbubbles, the as‐designed PGL‐DiR MBs possess remarkably high drug loading contents (5.8% PGL and 10.38% DiR) and stable co‐delivery drug combinations. In vivo experiments showed PGL‐DiR MBs could serve as an excellent ultrasound contrast agent to enhance ultrasound imaging greatly for identifying the location and size of the tumors. Upon exposure to ultrasound, in situ conversion of PGL‐DiR MBs into nanoparticles resulted in a remarkable increase in fluorescence intensity (~5 folds) in tumor compared with PGL‐DiR NPs, validating the enhanced tumor accumulation and cellular uptake of therapeutic agents. PGL‐DiR MBs showed complete tumor ablation without recurrence in vivo, while PGL‐DiR NPs showed only 72.6% tumor growth inhibition at the same dose. We believe that PGL‐DiR MBs will soon reach their full potential as an important class of phototherapeutic formulations and will contribute to remarkable advances in cancer treatments.  相似文献   

2.
An ideal cancer nanomedicine should precisely deliver therapeutics to its intracellular target within tumor cells. However, the multiple biological barriers seriously hinder their delivery efficiency, leading to unsatisfactory therapeutic outcome. Herein, pH/cathepsin B hierarchical‐responsive nanoconjugates (HRNs) are reported to overcome these barriers by sequentially responding to extra‐ and intracellular stimuli in solid tumors for programmed delivery of docetaxel (DTX). The HRNs have stable nanostructures (≈40 nm) in blood circulation for efficient tumor accumulation, while the tumor extracellular acidity induces the rapid dissociation of HRNs into polymer conjugates (≈5 nm), facilitating the deep tumor penetration and cellular internalization. After being trapped into the lysosomes, the conjugates are cleaved by cathepsin B to release bioactive DTX into cytoplasm and inhibit cell proliferation. In addition to the direct inhibition effect, HRNs can trigger the in vivo antitumor immune responses via the immunogenic modulation of tumor cells, activation of dendritic cells (DCs), and generation of cytotoxic T‐cell responses. By employing a combination with α‐PD‐1 (programmed cell death 1) therapy, synergistic antitumor efficacy is achieved in B16 expressing ovalbumin (B16OVA) tumor model. Hence, this strategy demonstrates high efficiency for precise intracellular delivery of chemotherapeutics and provides a potential clinical candidate for cancer chemo‐immunotherapy.  相似文献   

3.
Nanomedicine is a promising approach for combination chemotherapy of triple‐negative breast cancer (TNBC). However, the therapeutic efficacy of nanoparticulate drugs is suppressed by a series of biological barriers. The authors herein present a programmed stimuli‐responsive liposomal vesicle to overcome the sequential barriers for enhanced TNBC therapy. The intelligent vesicles are engineered by integrating an enzyme‐cleavable polyethylene glycol (PEG) corona, a light‐responsive photosensitizer pheophorbide a (PPa), and a temperature‐sensitive liposome (TSL) into a single nanoplatform. The resultant enzyme, light, and temperature multisensitive liposome (ELTSL) is sequentially coloaded with a lipophilic oxaliplatin prodrug of hexadecyl‐oxaliplatin carboxylic acid (HOC) and hydrophilic doxorubicin hydrochloride (DOX). Dual drug‐loaded ELTSL displays enhanced tumor penetration and increased cellular uptake upon matrix metalloproteinase 2 mediated cleavage of the PEG corona. Under NIR laser irradiation, PPa induces mild hyperthermia effect to trigger ultrafast drug release in the tumor cells. In combination with PPa‐mediated photodynamic therapy, HOC and DOX coloaded ELTSL show significantly improved antitumor efficacy than monotherapy. Given the clinically translatable potential of the liposomal vesicles, ELTSL might represent a promising nanoplatform for combination TNBC therapy.  相似文献   

4.
Although cisplatin‐based neoadjuvant chemotherapy is an efficient therapy approach for triple‐negative breast cancer (TNBC), it has dismal prognosis and modestly improved survival benefit. Here, a synergistic immunotherapy of TNBC premised on the elicitation and promotion of immunogenic cell death (ICD) response, through a transformable nanoparticle‐enabled approach for contemporaneous delivery of cisplatin, adjudin, and WKYMVm is reported. The nanoparticles can sequentially respond to matrix metalloproteinases‐2, pH, and glutathione to achieve structural transformation with the advantages of optimal size change, efficient drug delivery, and well‐controlled release. Cisplatin and adjudin can synergistically amplify reactive oxygen species (ROS) cascade and eventually increase the formation of hydrogen peroxide and downstream highly toxic ROS like ?OH, which can elicit ICD response by mechanisms of endoplasmic reticulum stress, apoptotic cell death, and autophagy. WKYMVm can further promote anti‐TNBC immunity by activation of formyl peptide receptor 1 to build stable interactions between dendritic cells and dying cancer cells. Thus, the nanoparticles achieve significant primary tumor regression and pulmonary metastasis inhibition as well as a remarkable survival benefit, with boosting of the innate and adaptive anti‐TNBC immunity.  相似文献   

5.
A reactive oxygen species (ROS)‐activatable doxorubicin (Dox) prodrug vesicle (RADV) is presented for image‐guided ultrafast drug release and local‐regional therapy of the metastatic triple‐negative breast cancer (TNBC). RADV is prepared by integrating a ROS‐activatable Dox prodrug, a poly(ethylene glycol) (PEG)‐modified photosensitizer pyropheophorbide‐a, an unsaturated phospholipid 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine, and cholesterol into one single nanoplatform. RADV is of extremely high drug loading ratio (27.5 wt%) by self‐assembly of the phospholipid‐mimic Dox prodrug into the liposomal bilayer membrane. RADV displays good colloidal stability to prevent premature drug leakage during the blood circulation and inert photochemotoxicity to avoid nonspecific side effect. RADV passively accumulates at tumor site through the enhanced permeability and retention effect when administrated systemically. Once deposited at the tumor site, RADV generates fluorescent and photoacoustic signals to guide near‐infrared (NIR) laser irradiation, which can induce localized ROS generation, not only to trigger prodrug activation and ultrafast drug release but also conduct photodynamic therapy in a spatiotemporally controlled manner. In combination with NIR laser irradiation, RADV efficiently inhibits the tumor growth and distant metastasis of TNBC. Local‐regional tumor therapy using intelligent theranostic nanomedicine might provide an alternative option for highly efficient treatment of the metastatic TNBC.  相似文献   

6.
The tumor growth and metastasis is the leading reason for the high mortality of breast cancer. Herein, it is first reported a deep tumor‐penetrating photothermal nanotherapeutics loading a near‐infrared (NIR) probe for potential photothermal therapy (PTT) of tumor growth and metastasis of breast cancer. The NIR probe of 1,1‐dioctadecyl‐3,3,3,3‐tetramethylindotricarbocyanine iodide (DiR), a lipophilicfluorescent carbocyanine dye with strong light‐absorbing capability, is entrapped into the photothermal nanotherapeutics for PTT application. The DiR‐loaded photothermal nanotherapeutics (DPN) is homogeneous nanometer‐sized particles with the mean diameter of 24.5 ± 4.1 nm. Upon 808 nm laser irradiation, DPN presents superior production of thermal energy than free DiR both in vitro and in vivo. The cell proliferation and migration activities of metastatic 4T1 breast cancer cells are obviously inhibited by DPN in combination with NIR irradiation. Moreover, DPN can induce a higher accumulation in tumor and penetrate into the deep interior of tumor tissues. The in vivo PTT measurements indicate that the growth and metastasis of breast cancer are entirely inhibited by a single treatment of DPN with NIR irradiation. Therefore, the deep tumor‐penetrating DPN can provide a promising strategy for PTT of tumor progression and metastasis of breast cancer.  相似文献   

7.
A photoresponsive pea‐like capsule (nanopea) that also represents a photothermal agent is constructed by wrapping multiple polymer micelles (polyvinyl alcohol, PVA) in reduced graphene oxide nanoshells through a double emulsion approach. Resulting nanopeas can transport multiple PVA micelles containing the fully concealed hydrophobic drug docetaxel (DTX) which can be later released by a near‐infrared photoactuation trigger. Through integrating the rod‐shaped adhesion and lactoferrin (Lf) targeting, the nanopea enhances both uptake by cancer cellc in vitro and particle accumulation at tumor in vivo. A photopenetrative delivery of micelles/DTX to the tumor site is actuated by NIR irradiation which ruptures the nanopeas as well as releases nanosized micelles/DTX. This trigger also results in thermal damage to the tumor and increases the micelles/DTX permeability, facilitating drug penetration into the deep tumor far from blood vessels for thermal chemotherapy. This nanopea with the capability of imaging, enhanced tumor accumulation, NIR‐triggered tumor penetration, and hyperthermia ablation for photothermal chemotherapy boosts tumor treatment and shows potential for use in other biological applications.  相似文献   

8.
The clinical application of the cytotoxic chemotherapeutic agents in the treatment of metastatic breast cancer is limited by their poor selectivity to cancer cells. In this work, a bionic nanodevice consisting of the docetaxel (DTX)‐heparan sulfate (HS) conjugate (HS‐DTX) micelle with a red blood cells membrane (RBC) coating on its surface, termed as rHS‐DTX, is first constructed. It is found that the cytotoxicity of DTX is concealed by HS in human mammary epithelial Michigan Cancer Foundation (MCF)‐10A cells but restored in human mammary cancer MCF‐7 cells because HS is hydrolyzed by heparanase (Hpa), which is overexpressed only in MCF‐7 but not MCF‐10A cells. The RBC coating enhances the cellular uptake of HS‐DTX and endows it with the long circulating ability in blood. In the MCF‐7 metastatic breast cancer mice model, rHS‐DTX exhibits 6.35‐fold higher intratumor DTX accumulation than the free DTX injection and achieves a tumor inhibiting rate of 98.2% and a lung metastasis suppression rate of 99.6%. No severe toxicity is observed in the major organs and blood of mice treated with rHS‐DTX. In summary, rHS‐DTX can provide a promising strategy for targeting therapy of metastatic breast cancer by improving the tumor‐suppressing efficacy of DTX.  相似文献   

9.
The poor drug delivery to primary and metastatic tumors of breast cancer remains a great challenge for effective antimetastasis therapy. Herein, a tumor microenvironment‐activated cabazitaxel micelles decorated with legumain‐specific melittin (TCM‐legM) are rationally designed for programed targeting of breast cancer metastasis. TCM‐legM is quiescent in blood circulation, but can be specifically activated by the highly expressed legumain in tumor microenvironments to improve their specific targeting and deep penetrating to primary or metastatic tumors. Thereafter, the activated TCM‐legM can be efficiently internalized by cancer cells and motivate the rapid pH‐responsive drug release for antimetastasis therapy. In metastatic 4T1 breast cancer cells, TCM‐legM presents significant inhibition on the proliferation, migration, and invasion activities. In vivo, TCM‐legM can be effectively delivered to both primary and metastatic tumors of breast cancer with deep tumor penetration and efficient cellular internalization, thereby resulting in a notable reduction of tumor growth and producing a 93.4% suppression of lung metastasis. Taken together, the rationally designed TCM‐legM can provide an intelligent drug delivery strategy to enhance the medical performance on treating breast cancer metastasis.  相似文献   

10.
Up to date, a large variety of liposomal nanodrugs have been explored for cancer nanomedicine, showing encouraging results in both preclinical animal experiments and clinical treatment of cancer patients. Herein, a phospholipid conjugated with a cisplatin prodrug is used as the major structure component of liposomes together with other commercial lipids via self‐assembling. By doping with 1,1′‐dioctadecyl‐3,3,3′,3′‐tetramethylindotricarbocyanine iodide (DiR), a lipophilic dye with strong near infrared (NIR) absorbance and fluorescence, the obtained DiR‐Pt(IV)‐liposome is found to be an effective probe for in vivo NIR fluorescence and photoacoustic bimodal imaging. Attributing to its intrinsically doped cis‐Pt(IV) prodrug, efficient photothermal conversion ability, and excellent tumor homing ability, DiR‐Pt(IV)‐liposome confers greatly enhanced therapeutic outcomes in the combined photothermal‐chemotherapy. Moreover, Pt(IV)‐liposome is also demonstrated to be an efficient carrier for both small hydrophilic molecules and proteins, which are encapsulated inside the water‐cavity of liposomes, further demonstrating the versatile functions of this nanoplatform. This study develops a unique type of liposomal nanomedicine with a prodrug conjugated phospholipid as the major structure component. Such Pt(IV)‐liposome is featured with advantages including precisely defined/easily tunable drug compositions, stealth‐like pharmacokinetics, efficient tumor passive uptake, and the capabilities to simultaneously load with various types of imaging or therapeutic agents.  相似文献   

11.
Inorganic nanoparticles (NPs) are promising drug delivery carriers owing to their high drug loading efficiency, scalable preparation, facile functionalization, and chemical/thermal stability. However, the clinical translation of inorganic nanocarriers is often hindered by their poor biodegradability and lack of controlled pH response. Herein, a fully degradable and pH‐responsive DOX@ACC/PAA NP (pH 7.4–5.6) is developed by encapsulating doxorubicin (DOX) in poly(acrylic acid) (PAA) stabilized amorphous calcium carbonate (ACC) NPs. The DOX‐loaded NPs have small sizes (62 ± 10 nm), good serum stability, high drug encapsulation efficiency (>80%), and loading capacity (>9%). By doping proper amounts of Sr2+ or Mg2+, the drug release of NPs can be further modulated to higher pH responsive ranges (pH 7.7–6.0), which enables drug delivery to the specific cell domains of tissues with a less acidic microenvironment. Tumor inhibition and lower drug acute toxicity are further confirmed via intracellular uptake tests and zebrafish models, and the particles also improve pharmacokinetics and drug accumulation in mouse xenograft tumors, leading to enhanced suppression of tumor growth. Owing to the excellent biocompatibility, biodegradability, and tunable drug release behavior, the present hybrid nanocarrier may find broad applications in tumor therapy.  相似文献   

12.
Therapeutic responses to chimeric antigen receptor (CAR) T cell therapy in patients with limited treatment options have been appealing in several clinical trials. However, the efficacy of CAR-T therapy has been challenged by several obstacles when treating patients with solid tumors, such as severe toxicities, restricted access to tumor sites, suboptimal therapeutic persistence, and manufacturing issues. Nanotechnology has the advantages of protecting CAR-T cells from being suppressed by tumor microenvironment (TME) and favorably adapting immune-modulating drugs’ pharmacokinetics by modifying their spatiotemporal release profiles. Loaded with nanoparticles and packed onto CAR-T cells, immune-modulating drugs can be delivered to the tumor site and lymph node more efficiently, stimulating the expansion and activity of CAR-T cells. To protect normal tissues from the nonspecific toxicity of the activated CAR-T cells, formulations are optimized toward tumor targeting delivery of nanotechnology. This review summarizes the nanotechnology strategies to improve the safety and efficacy of CAR-T therapy. In addition, the unsolved problems existing in the clinical application of CAR-T therapy are focused on, where study and exploration by the way of nanotechnology is needed.  相似文献   

13.
Photocages enable the precise activation of molecular function with light in many research fields, such as anticancer treatment, where remote spatiotemporal control over the release of an active drug is needed. However, the poor physiological stability and tumor accumulation of conventional small molecular photocages are significant obstacles to developing efficient therapy in vivo. In this study, a new concept of “polyphotocage” is proposed through photocage–polymer hybrid macromolecular engineering. Photoresponsive Ru complex photocage is designed and fused with PEGylated polycarbonates, resulting in the polyphotocage. Various anticancer drugs can be readily conjugated to the polyphotocage via coordination linkage, which can be cut off to release drugs by red light. The polyphotocages can self-assemble into nanoparticles, which enhances the stability of the Ru photocage and demonstrates the efficient accumulation in different-sized tumorswith a high signal-to-background ratio. Furthermore, rapid cellular internalization and mitochondrial anchoring capability allowed the polyphotocages to deliver drugs into the mitochondria, which induces mitochondrial dysfunction and cell death. These properties ensure the effective delivery of anticancer drugs to solid tumors and multiple tiny tumors, ultimately inhibiting tumor proliferation. This strategy of polyphotocages provides a new platform for the future design of drug-delivery systems for cancer photochemotherapy.  相似文献   

14.
Precise delivery and release of therapeutics in the subcellular targets are critical for tumor-selective chemotherapy. Self-immolative structures are sophisticatedly designed to achieve stimuli-responsive drug delivery. Herein, the facile fabrication of self-immolative peptide-camptothecin (CPT) nanoassemblies is reported for cancer-selective drug delivery by utilizing the dual-mode peptide targeting design and amine-catalyzed intramolecular hydrolysis. The dual-mode peptide targeting design is realized by co-assembly of tumor targeting and nuclei-localizing peptide-CPT prodrugs, rendering the nanoassemblies with efficient cancer cell-selective capability. When the nanoassemblies enter cancer cell, the overexpressed endonuclear histone deacetylases (HDACs) cleave the acetyl group to generate primary amines, triggers amine-catalyzed intramolecular hydrolysis, and fast-release drug in the cell nuclei. The peptide-CPT prodrugs release up to 68% CPT in 1 h in the presence of HDACs, while no detectable CPT release is observed in the absence of HDACs at the same time. The peptide-CPT prodrugs selectively kill cancer cells with high HDACs levels. The dual targeting peptide-CPT nanoassemblies exhibit extended blood circulation, excellent tumor accumulation, and potent antitumor activity by inhibiting tumor progression and metastasis in mice bearing 4T1 aggressive breast tumors. Overall, the HDAC-triggered self-immolative strategy is promising for developing cancer-selective drug delivery systems.  相似文献   

15.
Cell‐based drug delivery systems are a promising platform for tumor‐targeted therapy due to their high drug‐loading capacities and inherent tumor‐homing abilities. However, the real‐time tracking of these carrier cells and controlled release of the encapsulated drugs are still challenging. Here, ultrasound‐activatable cell bombs are developed by encapsulating doxorubicin (DOX) and phase transformable perfluoropentane (PFP) into hollow mesoporous organosilica nanoparticles (HMONs) to prepare DOX/PFP‐loaded HMONs (DPH), followed by internalization into macrophages (RAW 264.7 cells). The resulting cell bombs (DPH‐RAWs) can maintain viability and actively home to the tumor. Especially, their migration can be tracked in real time using ultrasound due to the vaporization of a small portion of PFP during cell incubation at 37 °C. After accumulation at the tumor site, the further vaporization of remaining PFP can be triggered by a short‐pulsed high intensity focused ultrasound (HIFU) sonication, resulting in the generation of several large microbubbles, which destroys DPH‐RAWs and allows drug release out of these cells. The DPH‐RAWs combined with short‐pulsed HIFU sonication significantly inhibit tumor growth and prolong survival of tumor‐bearing mice. In conclusion, this study provides a new approach to cell‐based drug delivery systems for real‐time tracking of their migration and targeted cancer treatment.  相似文献   

16.
Improved techniques for local administration of anticancer drugs are needed to reduce the side effects of chemotherapy owing to leakage of anticancer drugs from tumors and to enhance therapeutic efficacy. This study presents the development of smart ferrofluid that transforms immediately into a gel in tumors and generates heat in response to an alternating magnetic field (AMF), simultaneously releasing the anticancer drug. The smart ferrofluid, which is synthesized using less toxic magnetic materials (Fe3O4 nanoparticles), natural polysaccharides (alginate), and amino acids (cysteine), can also act as a contrast agent for magnetic resonance imaging (MRI). The ferrofluid also incorporates an anticancer drug (i.e., doxorubicin, DOX) via hydrogen bonds. AMF causes heating of gels prepared from the DOX‐containing ferrofluid, resulting in gel shrinkage and DOX release. In vivo experiments demonstrated that the ferrofluid transforms into a gel in the tumor, with the gel remaining in the tumor. Furthermore, magnetic thermochemotherapy using this ferrofluid inhibited tumor growth, while magnetic hyperthermia alone had only a marginal effect. Thus, the combination of magnetic hyperthermia and chemotherapy may be important for suppressing tumor growth. In summary, the ferrofluid presented here has the potential to facilitate MRI‐guided magnetic thermochemotherapy through a combination of endoscopic technologies in the future.  相似文献   

17.
Metastatic triple-negative breast cancer (TNBC) has a poor prognosis and high mortality with no effective treatment options, and immunotherapy is highly anticipated as a potential treatment but is limited by the lack of tumor-infiltrating T lymphocytes in TNBC. Herein, red blood cell (RBC) membrane-camouflaged polyphosphoester (PPE) nanoparticles (RBC@PPEMTO/PFA) are prepared as the nanocarriers of mitoxantrone (MTO) and perfluoroalkane (PFA) for synergized immunotherapy. The encapsulated MTO can generate heat and reactive oxygen species (ROS) to achieve photothermal and photodynamic therapy; moreover, ROS further triggers the self-accelerating release of MTO from the ROS-sensitive PPE core to enable chemotherapy. The RBC@PPEMTO/PFA-mediated sequential photothermal/photodynamic/chemotherapy efficiently promotes the infiltration of CD8+ T cells into TNBC tumor tissue and synergizes the therapeutic activity of an immune checkpoint blockade antibody for metastatic TNBC treatment in distant and lung metastasis models. This biomimetic nanomedicine of MTO provides a convenient and available strategy to sensitize TNBC to immune checkpoint blockade antibody.  相似文献   

18.
Optimal nanosized drug delivery systems (NDDS) require long blood circulation and controlled drug release at target lesions for efficient anticancer therapy. Red blood cell (RBC) membrane‐camouflaged nanoparticles (NPs) can integrate flexibility of synergetic materials and highly functionality of RBC membrane, endowed with many unique advantages for drug delivery. Here, new near‐infrared (NIR)‐responsive RBC membrane‐mimetic NPs with NIR‐activated cellular uptake and controlled drug release for treating metastatic breast cancer are reported. An NIR dye is inserted in RBC membrane shells, and the thermoresponsive lipid is employed to the paclitaxel (PTX)‐loaded polymeric cores to fabricate the RBC‐inspired NPs. The fluorescence of dye in the NPs can be used for in vivo tumor imaging with an elongated circulating halftime that is 12.3‐folder higher than that of the free dye. Under the NIR laser stimuli, the tumor cellular uptake of NPs is significantly enhanced to 2.1‐fold higher than that without irradiation. The structure of the RBC‐mimetic NPs can be destroyed by the light‐induced hyperthermia, triggered rapid PTX release (45% in 30 min). These RBC‐mimetic NPs provide a synergetic chemophotothermal therapy, completely inhibited the growth of the primary tumor, and suppress over 98% of lung metastasis in vivo, suggesting it to be an ideal NDDS to fight against metastatic breast cancer.  相似文献   

19.
A biocompatible and modifiable protein nanocarrier is a promising candidate for tumor targeted drug delivery. However, it is challenging to effectively load hydrophobic drugs, not to mention to upload both hydrophilic and hydrophobic drugs on one protein nanocarrier. Here, an amphiphilic multi-drug loading protein nanocage (Am-PNCage) is presented which is generated by replacing the fifth helix of human H-ferritin (HFn) subunit with a functional motif composed of hydrophobic–hydrophilic-RGD peptides. The Am-PNCage possesses a dual targeting property resulting from the intrinsic CD71 targeting ability of HFn and the integrin α vβ3 targeting ability of displayed RGD peptides. Through the hydrophilic drug entry channel in the protein nanocage and hydrophobic peptides displayed on the outer surface, amphiphilic epirubicin (132)/camptothecin (50) are stereoscopically loaded into the inner cavity/outer protein shell, respectively, for one Am-PNCage, exhibiting cascade drug release pattern. The dual-targeted Am-PNCage promotes the loaded drugs penetrating various 3D tumor models in vitro, as well as traversing the brain blood barrier and accumulating in brain tumors in vivo. Moreover, the drug loaded Am-PNCage shows reduced side effects and significantly enhances synergistic efficacy against brain tumor, metastatic liver cancers, and drug resistant breast tumor. Thus, the Am-PNCage represents a novel promising protein nanocarrier for targeted combination chemotherapy.  相似文献   

20.
Stroke is a common disease with high mortality worldwide. The endogenous neural regeneration during the intracerebral hemorrhage (ICH) stroke is restricted by the brain cavity, inflammation, cell apoptosis, and neural scar formation. Biomaterials serving as temporary supporting matrices are highly demanded as injectable implants for brain tissue regeneration. Herein, a chitosan micellar self-healing hydrogel (CM hydrogel) with comparable modulus (≈150 Pa) to brain, shape adaptability, and proper swelling (≈105%) is developed from phenolic chitosan (PC) and a micellar crosslinker (DPF). Two model drugs are individually packaged in the hydrophilic network and hydrophobic micelle cavities of CM hydrogel, and they feature asynchronous releasing kinetics, including a first-order rapid release for hydrophilic drug and a zero-order sustained release for hydrophobic drug. The dual-drug loaded CM (CMD) hydrogel delivers two clinical drugs corresponding to the anti-inflammatory and neurogenesis phases of the stroke to ICH rats through brain injection. The rats receiving CMD hydrogel show behavioral improvement (≈84% recovery) and balanced brain midline shift (≈0.98 left/right hemibrain ratio). Immunohistochemistry reveals neurogenesis (doublecortin- and nestin- positive cells) and evidence of angiogenesis (≈18 µm diameter vessels lined with CD31-positive cells). The injectable CMD hydrogel offers a novel asynchronous drug delivery platform for treating ICH stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号