首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) materials are promising for the realization of highly efficient emitters. However, severe efficiency roll-off at high brightness still remains as a huge challenge for TADF-based OLEDs. Herein, rod-like orange-red TADF emitters of 2BNCz-PZ and 2BNtCz-PZ with acceptor-donor-acceptor (A-D-A) configuration are developed by bearing dihydrophenazine donor and discoidal rigid boron, nitrogen-contained polycyclic aromatic hydrocarbons acceptors. Both emitters exhibit hybrid long-range/short-range charge-transfer excitation for small singlet-triplet energy splitting, short delayed lifetime, and high photoluminescence quantum yield, leading to fast singlet radiation rate over 107 s−1 and fast reverse intersystem crossing rate over 106 s−1. Furthermore, a horizontal emitting dipole orientation factor over 90% is realized. The optimized orange-red OLED based on 2BNtCz-PZ presents a maximum external quantum efficiency (EQE) of 31.0% and a slight EQE roll-off to 22.2% at 1 000 cd m−2 with emission peak over 600 nm. In addition, the single-emitting layer white OLEDs achieve a maximum EQE of 30.6% due to the use of these orange-red dopants with intense charge-transfer absorption band. This work reveals the potential of the rod-like A-D-A configuration for constructing highly efficient orange-red TADF emitters with low-efficiency roll-off.  相似文献   

2.
Most thermally activated delayed fluorescence (TADF) emitters have to be doped in the host for fabricating efficient organic light‐emitting diodes (OLEDs) and always suffer from quick efficiency roll‐off at high brightness, which severely affect their commercial application in display and lighting fields. In the work, a series of the polymers are synthesized by copolymerization of two carbazole monomers and one acridine derivative monomer containing benzophenone acceptor group. The obtained polymers therefore possess a conjugated backbone with carbazole/acridine moieties and benzophenone pendant to form the twisted donor/acceptor structure. Consequently, the TADF features inherited from the acridine derivative are maintained and improved by managing the content of acridine derivative monomer in the polymers. Solution‐processed OLEDs obtained from using neat polymer films exhibit comparable performance with organic TADF small molecules, achieving a maximum external quantum efficiency (EQE) of 18.1% and a very slow roll‐off with EQE of 17.8% at the luminance of 1000 cd m−2.  相似文献   

3.
Endowing thermally activated delayed fluorescence (TADF) emitter with aggregation-induced emission (AIE) peculiarity is of great significance for realizing more promising commercial applications. Herein, two new dual-emitting-cores emitters with a structure of acceptor-donor-donor-acceptor (A-D-D-A), namely 2DBT-BZ-2Cz and 2DFT-BZ-2Cz, were designed and synthesized to explore their luminescence trait. The emitters, adopting dual carbazole as donor segments and dual phenyl ketone in peripheral skeleton as electron acceptor units, were featured with small singlet (S1)–triplet (T1) splitting energy (ΔEST) of 0.02 eV and 0.01 eV. The efficient thermally activated delayed fluorescence (TADF) characteristics and aggregation-induced emission property make them suitable for nondoped OLED devices. The solution-processed green OLEDs based on 2DBT-BZ-2Cz demonstrated greater device performance with current efficiency of 20.7 cd A−1 and maximum luminescence of 10,000 cd m−2. This work thus provides the direction to explore luminogens of dual-emitting-cores with TADF and AIE features as promising candidates in solid state lighting.  相似文献   

4.
Organic light-emitting diodes (OLEDs) utilizing purely organic thermally activated delayed fluorescence (TADF) sensitizers have recently achieved high efficiencies and narrow-band emissions. However, these devices still face intractable challenges of severe efficiency roll-off at practical luminance and finite operational lifetime. Herein, a carbene-Cu(I)-amide complex, (MAC*)Cu(Cz), is demonstrated as a TADF sensitizer for both fluorescent and TADF OLEDs. The (MAC*)Cu(Cz)-sensitized fluorescent OLED not only achieves a high external quantum efficiency (EQE) of 14.6% with an extremely low efficiency roll-off of 12% at the high luminance of 10 000 nits, but also delivers a 15 times longer operational lifetime than that of the non-sensitized reference device. More importantly, utilizing the (MAC*)Cu(Cz) sensitizer in the multi-resonance (MR) TADF OLED results in a record-high EQE of 26.5% together with a full-width at half maximum of 46 nm and an emission peak at 566 nm. This value is the state-of-the-art efficiency for yellow-emitting MR-TADF OLEDs. The photophysical analysis proved that the fast reverse intersystem crossing process of (MAC*)Cu(Cz) is the key factor to suppress triplet exciton involved quenching at high luminance. This finding firstly demonstrates the use of Cu(I) complex as an efficient TADF sensitizer and paves the way for practical applications of TADF sensitized OLEDs.  相似文献   

5.
Luminescent materials with thermally activated delayed fluorescence (TADF) can harvest singlet and triplet excitons to afford high electroluminescence (EL) efficiencies for organic light‐emitting diodes (OLEDs). However, TADF emitters generally have to be dispersed into host matrices to suppress emission quenching and/or exciton annihilation, and most doped OLEDs of TADF emitters encounter a thorny problem of swift efficiency roll‐off as luminance increases. To address this issue, in this study, a new tailor‐made luminogen (dibenzothiophene‐benzoyl‐9,9‐dimethyl‐9,10‐dihydroacridine, DBT‐BZ‐DMAC) with an unsymmetrical structure is synthesized and investigated by crystallography, theoretical calculation, spectroscopies, etc. It shows aggregation‐induced emission, prominent TADF, and interesting mechanoluminescence property. Doped OLEDs of DBT‐BZ‐DMAC show high peak current and external quantum efficiencies of up to 51.7 cd A?1 and 17.9%, respectively, but the efficiency roll‐off is large at high luminance. High‐performance nondoped OLED is also achieved with neat film of DBT‐BZ‐DMAC, providing excellent maxima EL efficiencies of 43.3 cd A?1 and 14.2%, negligible current efficiency roll‐off of 0.46%, and external quantum efficiency roll‐off approaching null from peak values to those at 1000 cd m?2. To the best of the authors' knowledge, this is one of the most efficient nondoped TADF OLEDs with small efficiency roll‐off reported so far.  相似文献   

6.
Blue conjugated polymers-based OLEDs with both high efficiency and low efficiency roll-off are under big challenge. Herein, a strategy of local conjugation is proposed to construct high-efficiency blue-emitting conjugated polymers, in which the conjugation degree of polymeric backbones is adjusted by inserting different spacers. In this way, the energy level of triplet state and the energy transfer direction of the polymeric main-chains can be effectively regulated. Benefiting from such fine regulation, the prepared alternative copolymers Alt-PB36 with local conjugated main-chains can better suppress the accumulation of long-lived triplet excitons comparing with the complete conjugated polymers. The higher PLQY of Alt-PB36 also verifies the effective energy transfer from the polymeric main-chains to the TADF units. Accordingly, Alt-PB36 based solution-processed OLEDs achieve an EQEmax of 11.6% and a very low efficiency roll-off of 2.8% at 100 cd m−2 and 15.2% at 500 cd m−2. This result represents the best efficiency among blue light-emitting conjugated polymer-based OLEDs so far under high luminance.  相似文献   

7.
Thermally activated delayed fluorescence (TADF)‐type compounds have great potential as emitter molecules in organic light‐emitting diodes, allowing for electrofluorescence with 100% internal quantum efficiency. In small molecules, TADF is achieved through the formation of intramolecular charge‐transfer states. The only design limitation is the requirement that donor and acceptor entities spatially decouple the highest occupied and lowest unoccupied molecular orbitals, respectively, to minimize exchange splitting. The development of polymeric TADF emitters, on the contrary, has seen comparably small progress and those are typically built up from monomeric units that show promising TADF properties in small molecule studies beforehand. By contrast, herein, a way to achieve TADF properties in cyclic oligomers and polymers composed of non‐TADF building blocks is shown. Due to a strongly decreased energy splitting of the polymer with respect to the individual repeating unit between the lowest singlet and triplet excited state (ΔEST) and a sufficiently high radiative decay rate kSr, a highly efficient TADF polymer with up to 71% photoluminescence quantum yield is obtained. For the first time, an encouraging method is provided for producing highly efficient TADF oligomers and polymers from solely non‐TADF units via induced conjugation, opening a new design strategy exclusive for polymers.  相似文献   

8.
A series of low band gap conjugated copolymers containing 9,10-modified phenanthrene and diketopyrrolopyrrole (DPP) units were synthesized as electron donor materials for bulk heterojunction organic solar cells. These donor-acceptor type PDPP copolymers have varying solubilizing groups on their identical conjugated backbones. The optical bandgap of PDPP copolymers is about 1.6 eV which corresponds to the long wavelength region of the solar spectrum. Through the incorporation of phenanthrene units into the conjugated backbone instead of commonly used thiophene derivatives, a higher open-circuit voltage of about 0.8 V could be achieved, as a result of their deeper HOMO level. Of all the devices, the P4:PC61BM BHJ system showed the best performance with a Voc of 0.79 V, a Jsc of 5.97 mA cm−2, a fill factor of 0.62 and a power conversion efficiency of 2.73% due to superior nanoscale phase separation between the electron donor and electron acceptor materials than in the other polymers arising from short-branched solubilizing groups on the phenanthrene side of its conjugated backbone.  相似文献   

9.
Three D-σ-A type thermally activated delayed fluorescent materials (TADF), AQ-S-Cz, AQ-S-DPA and AQ-S-DMAC, with sulfur atom connect donors and acceptor, were designed and synthesized. All of the emitters exhibit small ΔEST (<0.2 eV) and the limited overlap of the molecular frontier orbitals because of the C–S σ bond and the distorted molecular structure. AQ-S-Cz and AQ-S-DMAC with rigid donor obtained higher photoluminescence quantum yields than AQ-S-DPA. The three emitters have excellent TADF performance and short delayed fluorescence lifetimes (0.32 μs for AQ-S-Cz, 0.15 μs for AQ-S-DPA, 0.28 μs for AQ-S-DMAC). The experiment results show that the three emitters have intra-molecular charge transition (intra-CT), especially inter-molecular charge transition (inter-CT) effect. The luminescence of these emitters can be efficiently regulated by intra-CT, especially inter-CT and realize prominent red shift from yellow (556 nm) to red emission (657 nm). Compared with that of AQ-S-Cz and AQ-S-DPA, the device based on AQ-S-DMAC obtained maximum external quantum efficiencies of 7.17% with turn-on voltage of 3.5 V. This work enriches the D-σ-A type orange-red TADF materials and provides a perspective approach of developing long wavelength TADF emitters.  相似文献   

10.
We designed and synthesized two dendrimers TA-Cz and TA-3Cz with TADF characteristics by using non-conjugated aliphatic chains carbazole/tricarbazole as peripheral dendrons. Both dendrimers possess excellent thermal and morphological stabilities. Introduced the phenyl bridge to increase the distance of the emission core TA between donor (D) and acceptor (A) is a promising route to simultaneously achieve small singlet–triplet energy splitting (ΔEST) and enhanced PL quantum yields (PLQYs). Furthermore, non-conjugated aliphatic chains carbazole/tricarbazole dendrons were conveniently introduced to the TADF core, which can effective encapsulate the emission core to restrain the concentration quenching effect and make the fluorescence of the core independent. By utilizing TA-3Cz emitter as the non-doped solution-processed emissive layers, the resulting yellow OLED achieved low driving voltage of 2.4 V and superior external quantum efficiency of 11.8%. Thus, our results here provide a facile strategy to obtain highly efficient non-doped solution-processed OLEDs by employing the reasonable molecular design of the TADF core and the utilization of flexible alkyl chain.  相似文献   

11.
The exploration of exciplex for organic light-emitting diodes (OLEDs) has been fleetly developed. However, many of them confront with the problems like phase separation and poor solubility, hampering their utilization in solution process. Hence, a series of soluble exciplex luminophores with the simple architecture of D-spacer-A (mCP-6C-TRZ, phCz-6C-TRZ and 2phCz-6C-TRZ) are synthesized and characterized, in which, the alkyl chain as ample spacer breaks the molecular backbone conjugation, induces intermolecular charge transfer process instead of intramolecular charge transfer in solid state. These materials are endowed with narrowed singlet−triplet splitting energy (ΔEST), efficient reverse intersystem crossing (RISC) process, and distinct thermally activated delayed fluorescence (TADF) characteristics. In view of their high triplet energy level (ET) and bipolar carrier transport ability, where efficient exciplexes are applied as the host, the solution-processed phosphorescence devices realize a low efficiency roll-off of 7.0% at 1000 cd m−2, high luminance, current efficiency (CE) and external quantum efficiency (EQE) of 25,990 cd m−2, 20.0 cd A−1 and 6.7%, respectively. These results offer a promising tactic to the establishment of exciplex with TADF feature as host for fabricating efficient solution processed OLEDs.  相似文献   

12.
Based on the integrated consideration and engineering of both conjugated backbones and flexible side chains, solution‐processable polymeric semiconductors consisting of a diketopyrrolopyrrole (DPP) backbone and a finely modulated branching side chain (ε‐branched chain) are reported. The subtle change in the branching point from the backbone alters the π?π stacking and the lamellar distances between polymer backbones, which has a significant influence on the charge‐transport properties and in turn the performances of field‐effect transistors (FETs). In addition to their excellent electron mobilities (up to 2.25 cm2 V?1 s?1), ultra‐high hole mobilities (up to 12.25 cm2 V?1 s?1) with an on/off ratio (Ion/Ioff) of at least 106 are achieved in the FETs fabricated using the polymers. The developed polymers exhibit extraordinarily high electrical performance with both hole and electron mobilities superior to that of unipolar amorphous silicon.  相似文献   

13.
The development of efficient red thermally activated delayed fluorescence (TADF) emitters with an emission wavelength beyond 600 nm remains a great challenge for organic light‐emitting diodes (OLEDs). Herein, two pairs of isomers are designed and synthesized by attaching electron‐donor 9,9‐diphenyl‐9,10‐dihydroacridine (DPAC) moiety to the different positions of two kinds of highly rigid planar acceptor cores (PDCN and PPDCN). Their TADF efficiencies and emission maxima (599–726 nm) are regulated by molecular isomer manipulation. Interestingly, the photoluminescence quantum yields (ΦPLs) of trans‐isomers T‐DA‐1 and T‐DA‐2 (78% and 89%) are remarkably higher than those of their corresponding cis‐isomers C‐DA‐1 and C‐DA‐2 (12% and 14%). Significantly increased ΦPL values can be explained by single crystal structures and theoretical simulation. As a result, a deep red TADF‐OLED based on T‐DA‐2 displays a maximum external quantum efficiency (EQE) of 26.26% at 640 nm. Notably, at a brightness of 100 cd m?2, the EQE value of T‐DA‐2‐based device still remains at an extremely high level of 23.95%, representing the highest value for reported red TADF‐OLEDs at the same brightness. These results provide a reasonable pathway to optimize optoelectronic properties and thereby construct efficient red TADF emitters through rational isomer engineering.  相似文献   

14.
High-quality hosts are indispensable for simultaneously realizing stable, high efficiency, and low roll-off blue solution-processed organic light-emitting diodes (OLEDs). Herein, three solution processable bipolar hosts with successively reduced triplet energies approaching the T1 state of thermally activated delayed fluorescence (TADF) emitter are developed and evaluated for high-performance blue OLED devices. The smaller T1 energy gap between host and guest allows the quenching of long-lived triplet excitons to reduce exciton concentration inside the device, and thus suppresses singlet-triplet and triplet-triplet annihilations. Triplet-energy-mediated hosts with high enough T1 and better charge balance in device facilitate high exciton utilization efficiency and uniform triplet exciton distribution among host and TADF guest. Benefited from these synergetic factors, a high maximum external quantum efficiency (EQEmax) of 20.8%, long operational lifetime (T50 of 398.3 h @ 500 cd m−2), and negligible efficiency roll-off (EQE of 20.1% @ 1000 cd m−2) are achieved for bluish-green TADF OLEDs. Additionally introducing a narrowband emission multiple-resonance TADF material as terminal emitter to accelerate exciton dynamic and improve exciton utilization, a higher EQEmax of 23.1%, suppressed roll-off and extended lifetime of 456.3 h are achieved for the sky-blue sensitized OLEDs at the same brightness.  相似文献   

15.
The understanding of the external enhancement effects from host matrixes on thermally activated delayed fluorescence (TADF) emitters is crucial but incomprehensive at present. Herein, a series of phosphine oxide (PO) acceptors mDBSOSPO (m  = 2, 3, and 4, corresponding to PO substitution position) and 4,4'-bis(9-carbazolyl)-2,2'-dimethylbiphenyl (CDBP) as donor is used to construct CDBP:mDBSOSPO exciplex matrixes with typical TADF behaviors. After doped with a conventional yellow TADF emitter 4CzTPNBu, the exciplex matrixes dramatically elevate the reverse intersystem crossing (RISC) efficiencies up to 99%, effectively reduce triplet nonradiative rate constant, and tenfold increase singlet radiative/nonradiative ratio beyond 30 in the case of CDBP:2DBSOSPO :3% 4CzTPNBu. The time-resolved photoluminescence and electroluminescence (EL) spectra demonstrate that in contrast to single-molecular hosts, besides the additional RISC channel for TADF facilitation, the exciplexes support the charge preseparation for the step-by-step charge transfer-based energy transfer featuring effective quenching suppression. These external enhancement effects of the exciplex matrixes lead to the state-of-the-art EL performances of their yellow TADF diodes, including the recording power and quantum efficiencies of 114.9 lm W−1 and 30.3% to date.  相似文献   

16.
High‐mobility semiconducting polymers composed of arylene vinylene and dithiophene‐thiadiazolobenzotriazole (SN) units are developed by three powerful design strategies, namely, backbone engineering, heteroatom substitution, and side‐chain engineering. First, starting from the quaterthiophene‐SN copolymer, a vinylene spacer is inserted into the quaterthiophene unit for constructing highly‐planar backbones. Second, heteroatoms (O and N atoms) are incorporated into the thienylene vinylene moieties to tune the electronic properties and intermolecular interactions. Third, the alkyl side chains are optimized to tune the solubility and self‐assembly properties. As a consequence, a remarkable thin film transistor performance is obtained. The very high hole mobility of 3.22 cm2 V?1 s?1 is achieved for the p‐type polymer, PSNVT‐DTC8, which is the highest value ever reported for the polymers based on the benzobisthiadiazole and its analogs. Moreover, heteroatom substitution efficiently varies the charge polarity of the polymers as in the case of the N atom substituted PSNVTz‐DTC16 displaying n‐type dominant ambipolar properties with the electron mobility of 0.16 cm2 V?1 s?1. Further studies using grazing‐incidence wide‐angle X‐ray scattering and atomic force microscopy have revealed the high crystallinities of the polymer thin films with strong π–π interactions and suitable polymer packing orientations.  相似文献   

17.
Highly efficient and stable blue quantum-dot light-emitting diodes (QD-LEDs) have been realized by using poly (9,9-bis(N-(2′-ethylhexyl)-carbazole-3-yl)-2,7-fluorene) (PFCz) as hole-transporting layers (HTLs). Due to the carbazole units as substituents at the 9-position of polyfluorene, PFCz shows higher hole mobility and better electrochemical stability than poly (N-vinlycarbazole) (PVK). As a result, the maximum current efficiency (CE) and external quantum efficiency (EQE) of the blue QD-LEDs increased from 4.32 cd A−1 to 7.9% for PVK HTL to 7.38 cd A−1 and 12.61% for PFCz HTL, respectively. Furthermore, the PFCz-based blue QD-LED exhibited lower turn-on voltage and longer device lifetime than the PVK-based device. The improvement performance of blue QD-LED should be attributed to the conjugated fluorene backbone and the substituents of the carbazole active sites, thus enhancing hole mobility and electrochemical stability. This result demonstrates that polyfluorenes with pendent carbazole groups is a promising hole-transporting materials for improving performance of blue QD-LEDs.  相似文献   

18.
Two near-infrared (NIR) dendrimers with TADF characteristics are reported to develop the non-doped solution-processed OLED for the first time. The rigid ring end-capped aliphatic chain dendrons are introduced to improve the dissolvability and film-forming ability. The dendrimers possess excellent thermal and morphological stabilities. Simultaneously, the dendrimers exhibit self-host feature that the peripheral carbazole/tricarbazole dendrons can encapsulate the core to prevent concentration quenching. Employing MPPA-3Cz as the emitter, the non-doped solution-processed device exhibits a maximum external quantum efficiency (EQE) of 0.254% with a peak wavelength at 715 nm, which is comparable to the most-efficient solution-processed NIR FOLEDs with similar electroluminescent spectra. Moreover, the device shows negligible efficiency roll-off at high current density. Our results indicate that the design of long-wavelength TADF dendrimers will be a promising strategy for the efficient non-doped solution-processed NIR OLEDs.  相似文献   

19.
Highly efficient thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs) based on exciplex are demonstrated in a blended system with commercially available 1,1-bis((di-4-tolylamino)phenyl)cyclohexane (TAPC) and 2,4,6-tris(biphenyl-3-yl)-1,3,5-triazine (T2T). By well adjusting the ratio between these two materials, the optimized device shows a low turn-on voltage of 2.4 V and a high external quantum efficiency (EQE) of 11.6%. More importantly, the device retains an EQE of 9.4% even at a high luminescence of 1000 cd/m2. The low efficiency roll-off is attributed to the small singlet-triplet splitting and the short of the delayed fluorescence lifetime. Both EQE and efficiency roll-off are ones of the best performance among the reported TADF OLEDs based on exciplex.  相似文献   

20.
Blue/orange complementary fluorescence/phosphorescence hybrid white organic light-emitting devices with excellent color stability and high efficiency have been fabricated, which are based on an easily fabricated multiple emissive layer (EML) configuration with an ultrathin non-doped orange phosphorescence EML selectively inserted between heavily doped blue thermally activated delayed fluorescence (TADF) EMLs. Through systematic investigation and improvement on luminance-dependent color shift and efficiency deterioration, a slight Commission Internationale de 1′Eclairage coordinates shift of (0.008, 0.003) at a practical luminance range from 1000 to 10000 cd/m2, a maximum power efficiency of 45.8 lm/W, a maximum external quantum efficiency (EQE) of 15.7% and an EQE above 12% at 1000 cd/m2 have been achieved. The heavily doped blue TADF emitters which act as the main charge transport channels and recombination sites in the host with high-lying lowest triplet excited state, take advantage of the bipolar transport ability to broaden the major charge recombination region, which alleviates triplet energy loss. The selectively inserted ultrathin non-doped orange EML makes its emission mechanism dominated by Förster energy transfer, which is effective to keep color stable under different drive voltages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号