首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In working process of huge heavy-load manipulators, such as the free forging machine, hydraulic die-forging press, forging manipulator, heavy grasping manipulator, large displacement manipulator, measurement of six-dimensional heavy force/torque and real-time force feedback of the operation interface are basis to realize coordinate operation control and force compliance control. It is also an effective way to raise the control accuracy and achieve highly efficient manufacturing. Facing to solve dynamic measurement problem on six-dimensional time-varying heavy load in extremely manufacturing process, the novel principle of parallel load sharing on six-dimensional heavy force/torque is put forward. The measuring principle of six-dimensional force sensor is analyzed, and the spatial model is built and decoupled. The load sharing ratios are analyzed and calculated in vertical and horizontal directions. The mapping relationship between six-dimensional heavy force/torque value to be measured and output force value is built. The finite element model of parallel piezoelectric six-dimensional heavy force/torque sensor is set up, and its static characteristics are analyzed by ANSYS software. The main parameters, which affect load sharing ratio, are analyzed. The experiments for load sharing with different diameters of parallel axis are designed. The results show that the six-dimensional heavy force/torque sensor has good linearity. Non-linearity errors are less than 1%. The parallel axis makes good effect of load sharing. The larger the diameter is, the better the load sharing effect is. The results of experiments are in accordance with the FEM analysis. The sensor has advantages of large measuring range, good linearity, high inherent frequency, and high rigidity. It can be widely used in extreme environments for real-time accurate measurement of six-dimensional time-varying huge loads on manipulators.  相似文献   

2.
面向航空航天领域对重载大吨位多维测力传感器的急需,通过引入冗余测力分支,提出一种适用于重载测力场合的新型过约束正交并联六维力传感器结构,在提高传感器结构刚度和承载能力的同时有效抑制了关节摩擦对多维力传感器测量精度的影响。基于螺旋理论,推导得到了该并联传感器一阶静力影响系数矩阵,建立理想状态下该新型过约束正交并联六维力传感器测量数学模型。考虑各测量分支的初始预紧力与刚度,基于传感器静力平衡方程与补充建立的位移协调方程,推导建立考虑初始预紧力与分支刚度因素下该新型过约束正交并联六维力传感器测量数学模型。在此基础上,设计并研制该新型过约束正交并联六维力传感器样机,搭建传感器加载标定与信号采集及处理试验系统,对新型过约束正交并联六维力传感器进行了加载标定试验。根据试验结果计算了传感器测量误差矩阵,分析得到了传感器测量精度,从而为重载过约束并联六维力传感器的开发与应用提供了参考。  相似文献   

3.
面向航空航天领域对重载大测力面积多维测力台研发的迫切需要,为克服现有多维力传感器研制后均需繁冗的加载标定,采用提出的多维力传感器“自标定”设计理念,通过构建机械解耦测力分支并辅以并联正交分布结构,提出一种新型弱耦合自标定重载并联正交四维测力台构型。基于滚动摩阻理论分析与论证其解耦测量机理与自标定原理。在此基础上,设计并研制了该自标定重载并联四维测力台及其标定加载系统,标定试验结果表明,该四维测力台最大测量误差为0.62%,最大耦合误差为0.56%,论证了其解耦及自标定特性,从而为该自标定重载并联四维测力台的实际应用奠定基础,也为研制大量程重载并联多维力传感器提供了新思路。  相似文献   

4.
This paper presents research on dynamic characteristics of a piezoelectric six-dimensional heavy force/moment sensor for a large-load robotic manipulator. The theory on dynamic characteristics of the sensor structure is analyzed, and a mathematical model of the sensor dynamics, decoupled into separate vibration modes, is provided. This model is complemented by dynamic mode analysis of the sensor by finite-element modeling (FEM; ANSYS software). A dynamic calibration experiment is designed, and methods and principles for measurements and data analysis are provided. The characteristic dynamic vibration modes of the piezoelectric force/moment sensor are extracted by analyzing experimental data, yielding amplitude frequency and phase frequency curves of the transfer function linking the excitation loads with the output signals of the transducer. The results of the dynamic calibration experiment demonstrate the good dynamic characteristics of the piezoelectric six-dimensional heavy force/moment sensor. The natural frequencies in the three force directions are high, with values close 2000 Hz. This demonstrates the applicability of the presented six-dimensional heavy force/moment sensor to large industrial robotic manipulators.  相似文献   

5.
According to cold heading process with overloaded craft, high-impact dynamic real-time measurement requirements, this paper presents researches on dynamic characteristics and optimization of PVDF piezoelectric film force sensor for steel ball cold heading forming quality monitoring, through the combination method of mechanism analysis, mathematical modeling, numerical simulation and experimental validation. The motivation and strategic objectives are to breakthrough dynamic time-varying impacting load measuring fundamental technologies in steel ball forging process. The structure of piezoelectric film force sensor is proposed. The theoretical calculation formula of natural frequency is deduced and calculated by using MATLAB software. The mechanical performance analysis on dynamic model and structural optimization simulation by FEM is carried out. In order to study the validity of the proposed method, a prototype of the sensor is fabricated. The static and dynamic calibration devices are designed to realize calibration experiments on the fabricated PVDF piezoelectric film force sensor. The differences among experimental value, simulation value and the theoretical value are given. The nonlinear error of the fabricated sensor is 0.197%. The sensor’s first order natural frequency value is 5238 Hz. It is proved that the PVDF piezoelectric film force sensor has superior dynamic performance and high accuracy for measuring deformation in steel ball. The paper will provide important scientific basis and technical foundation to achieve superior performance steel ball.  相似文献   

6.
预紧式并联六维力传感器容错测量机理与标定测试研究   总被引:3,自引:0,他引:3  
对一种预紧式并联六维力传感器进行了容错测量原理的理论分析与标定测试研究。介绍了预紧式并联六维力传感器的结构容错特点,并基于螺旋理论和变形协调关系,分别建立传感器无故障、信号故障时的数学模型,进而揭示其容错测量机理。研究分析了预紧式并联六维力传感器的静态标定算法,提出一种容错标定方法,并对传感器进行了无故障及信号故障时单向、两方向组合及分区加载的容错静态标定测试研究。通过分析测试数据,得到传感器不同工作状态下的线性误差。研究内容为容错六维力传感器的实际应用奠定了理论和试验基础。  相似文献   

7.
针对目前应力传感器不能兼顾柔性、动态测量及无法测量曲面接触应力特征信息等难题,设计了一种新型的PZT压电薄膜柔性应力传感器。主要有由PZT压电薄膜、导线、特殊的压敏涂层等构成。传感器的受力信息可以通过检测PZT压电薄膜传感器的电荷变化来获取,可应用于测量各种接触面之间的应力。为研究测量轮胎路面等具有复杂曲面接触结构的应力分布提供了新的思路和方法,分析了压电传式感器的工作原理,压电薄膜的传感特性,建立有限元分析模型,进行仿真分析,结果表明该传感器结构简单、体积小,相对于传统测量方法更加可靠,适用于曲面应力的测量。  相似文献   

8.
In this paper, a measurement method of six-axis load sharing based on the Stewart platform is presented. The force Jacobin matrix of the Stewart platform, the solution of forward kinematics of the Stewart platform and the deep beam element stiffness matrices were combined in the decoupling algorithm. The FEM model was established, and the results of FEM analysis agreed well with the calculation results from proposed method, which proves the effectiveness of the method of six-axis load sharing. Moreover, a six-axis heavy force sensor based on the Stewart platform was demonstrated in order to investigate the reasonability and validity of the six-axis load sharing model. And the experiment results verified the feasibility of the method.  相似文献   

9.
李成  丁天怀  陈恳 《机械工程学报》2009,45(12):257-262
为研究随钻测井时底部钻柱近钻头动力学特性,设计直梁应变片式测力传感器,研制一种基于虚拟仪器平台的模拟钻柱动态力无线测量装置,用于模拟钻柱旋转过程中轴向力、侧向力和转矩的多线程检测。在此基础上,比较井下数据传输方法,以纵波为传输载体,设计模拟钻柱声传输装置,对动态力数据进行脉冲时延和OOK(On-off keying)调制,沿管轴方向对有限长模拟钻柱施加纵向激励,进行模拟钻柱信道动态力测试信号的声传输试验。结果表明,系统在实验室内实现动态力数据经时延脉冲OOK信号调制后沿模拟钻柱信道的低频声波传输,为近钻头传感器测量数据的低频声传输系统的应用提供理论与试验依据。  相似文献   

10.
魏莉  周祖德  黄俊  何玉苗 《中国机械工程》2013,24(14):1873-1876
基于光纤Bragg光栅(fiber Bragg grating,FBG)传感技术,提出了一种基于永磁结构的FBG非接触机械振动位移测量方法,设计了永磁作用下FBG振动传感器的结构,采用ANSYS有限元软件进行了理论分析和数值仿真,制造了FBG传感器实验装置,进行了静态位移标定和动态测试实验,确定了传感器的线性区间。研究结果表明:该测量方法能满足相关振动检测要求,传感器线性区间内灵敏度为1.14μm, 线性度可达0.996,完全可应用于机械系统结构损伤和运行状态分布式动态监测。  相似文献   

11.
提出了一种新型的基于Stewart平台的超静定并联式六维力传感器结构,并对其进行了动力学理论分析和有限元仿真研究.描述了该传感器相对于经典Stewart平台六维力传感器所具有的结构特点;利用有限元法,采用位移协调和力平衡条件建立了传感器弹性动力学理论模型,依此模型进行数值分析,绘制了固有频率与各结构参数间变化关系曲线;并利用ANSYS软件建立了传感器有限元模型,进行了振动模态分析,得到其固有频率和振型.研究内容为深入开展六维力传感器的弹性动力学分析与综合及动态优化设计奠定了基础.  相似文献   

12.
介绍了一种新的六自由度足力测量装置的结构.首先描述了测试装置的硬件结构,然后运用坐标变换等数学工具,根据点在平面上的投影确定了移动体在空间的位移,并通过刚度矩阵,给出了该装置的数学模型及六维力向量的信息获取方法.试验结果表明,该装置方案可行,结构合理,数学模型正确,刚度矩阵的标定能满足精度要求,基本上达到了使用程度.  相似文献   

13.
Aiguo Song  Juan Wu  Gang Qin  Weiyi Huang 《Measurement》2007,40(9-10):883-891
Haptic based human–computer interaction (HapHCI) system is currently the frontier of robot research, which is widely used in virtual reality, rehabilitation, entertainment, and so on. The measurement of the multi-dimensional interactive force between human hand and interaction device such as hand-controller, joystick, limb rehabilitation device, etc., becomes an important component of the HapHCI. However, the existing commercial 6 degree-of-freedom (DOF) force sensors are too expensive and often over designed for HapHCI not only in axis but also in bandwidth. In this paper, a novel 4 DOF wrist force/torque sensor suitable for HapHCI is developed, which is self-decoupled without calculating the decoupling matrix. Thus this type of wrist force/torque can be called as direct output force sensor, which is quite different from the conventional ones called as indirect output force sensor. Its elastic body has a simple geometry which is easy to fabricate, and half the number of strain gauges compared to the existing commercial 6 DOF force/torque sensor. So the 4 DOF force/torque sensor is much lower in cost. This paper introduces the elastic body structure of the wrist force/torque sensors, and analyses the self-decoupled principle in detail. A prototype sensor is fabricated, and the calibration test results of the 4 DOF force/torque sensor validate the analysis and demonstrate the advantage of such a sensor.  相似文献   

14.
采用基座布置六维力传感器的方式进行机器人动力学参数辨识。以递推牛顿-欧拉方程为基础建立机器人动力学模型,给出六维力传感器输出与机器人关节间动力学关系,分离待辨识动力学参数并确定其最小惯性参数集,最终建立基于基座六维力传感器的机器人辨识模型。为了进一步提高辨识精度,采用两层低通滤波算法推导出加速度替代公式和速度滤波算法,减少加速度和速度噪声的影响。最后,以六自由度协作机器人的前2个关节为对象,设计辨识实验,获得两关节的最小动力学参数集。通过结果逆向验算表明,基座布置六维力传感器方式能以较高的精度辨识出机器人动力学参数。  相似文献   

15.
机器人基座六维力传感器常受到安装精度和机器人重力影响而出现测量误差。为了解决这一问题,在利用 D-H 法建立机器人位姿模型的基础上,推导出基于最小二乘法的基座六维力传感器静态重力补偿算法。针对算法中需要采集大量机器人位姿数据的问题,采用正交实验法确定样本空间以减少位姿采集量。最后以六自由度协作机器人为例,利用 6 因素 5 水平的正交实验表获取机器人典型位姿,搭建数据采集平台,实现补偿算法所需数据的采集,求解该机器人的基座六维力传感器静态重力补偿矩阵。实验表明,该补偿算法能够有效得到基座六维力传感器测得的误差值。  相似文献   

16.
为了精确采集手术机器人的多维作用力,提出了一种轴向等距分布式多维力测量传感器及其解耦方案,根据三条光纤布拉格光栅(FBG)的受力情况通过最小二乘法进行初步解耦,鉴于多种外部因素所造成的传感器输入与输出数据的非线性关系,基于前馈神经网络实现传感器的最终解耦.实验结果表明,所提出的传感器测量精度较高,解耦方法切实有效,能够...  相似文献   

17.
Compared with the lever-type amplifier, the rhombus-type amplifier has attracted more attention by virtue of large displacement amplification ratio, compact structure, and linear output displacement. In this paper, a novel electromagnetic force balance sensor (EFBS) based on the rhombus-type amplifier is presented to measure the mass with high precision. First, the structure and operating principle of the EFBS are described, and the requirements for the design and manufacture of the amplifier are put forward. Then, the analytical models of the two-stage rhombus-type amplifier are given out, and two guiding mechanisms are analyzed and modeled. Furthermore, the validity of the established model is verified by finite element analysis (FEA). Thanks to the theoretical guidance, an electromagnetic force balance sensor based on the two-stage rhombus-type amplifier and double parallelogram flexure mechanism is designed and tested. The experimental results demonstrate that the developed EFBS can measure the mass of the objects with high precision, and also verifies the correctness of the analytical model. This provides a new concept for the structural design of the EFBS.  相似文献   

18.
针对四点支撑结构的压电式六维力传感器线性度差,维间耦合严重的问题,提出了基于径向基函数(RBF)神经网络的解耦算法。分析了耦合产生的主要原因,建立了RBF神经网络模型。通过对六维力传感器进行标定实验获取解耦所需的实验数据,并对实验数据进行处理。然后采用RBF神经网络优化传感器输出系统的多维非线性解耦算法,解耦出传感器的输入输出映射关系,得到解耦后的传感器输出数据。对传感器解耦后的数据分析表明:采用RBF神经网络的解耦算法得到的最大Ⅰ类误差和Ⅱ类误差分别为1.29%、1.56%。结果显示:采用RBF神经网络的解耦算法,能够更加有效地减小传感器的Ⅰ类误差和Ⅱ类误差,满足了传感器两类误差指标均低于2%的要求。该算法有效地提高了传感器的测量精度,基本解决了传感器解耦困难的难题,  相似文献   

19.
This paper proposes a novel piezoelectric six-component force/torque sensor with four-point supporting structure, and makes research on force-sensing element's spatial arrangement of the novel sensor. Two kinds of different spatial arrangements are advanced, lozenge and square arrangement. The mathematical models are built and calculated. The influence on using performance of the two kinds of different spatial arrangements of the sensor is analyzed by FEM (ANSYS software). In order to investigate the validity of the proposed method, a prototype of piezoelectric six-component force/moment sensor is developed with two kinds of different spatial arrangements, and characteristic tests of the piezoelectric six-component force/moment sensor are performed. The test shows that both of the different spatial arrangement sensors could be used to measure six-component force/torque, but the square arrangement piezoelectric six-component force/moment sensor is more suitable for measurement of six-component force/torque on axis. The interference errors of square arrangement sensor are less than 5%, which are lower than those of the lozenge arrangement sensor. The natural frequencies in six directions are analyzed and discussed.  相似文献   

20.

A novel parallel sensor with six rigid/compliant hybrid limbs and six standard force sensors is developed for measuring the six-component force/torque. The measuring theory and performances are studied. A prototype of the robot hybrid hands with the parallel sensor is developed. A prototype of the parallel sensor is built up and its merits and performances are analyzed. A statics equation among the forces of the standard force sensors and the whole external load and a stiffness model of the parallel sensor are established based on its equivalent parallel mechanism. The force/torque of the parallel sensor is measured under the given external load. The theoretical solutions of the statics model of the parallel sensor are obtained and verified by both the experimental measuring solutions of the prototype of the parallel sensor and the simulation solutions of a FE model.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号