首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用燃烧波淬熄法研究了TiC-Al金属陶瓷自蔓延高温合成中显微组织的转变,淬熄试样中保留了未反应区、反应区及反应完成区.用扫描电子显微镜观察了燃烧反应中的显微组织转变过程,用能谱仪分析了各微区的成分变化,测量了燃烧温度和燃烧波蔓延速度,并用XRD分析了反应产物相的组成.结果表明,Ti-C-Al系燃烧反应起始于铝粉熔化后与固态钛粉反应生成Al3Ti,并随着反应温度的升高,TiC颗粒从溶有钛和碳的铝熔体中析出;当Al3Ti熔化后,从熔体中也析出TiC颗粒,最终产物组织中除大量的TiC颗粒分布于铝基体中外,还发现有少量的Al3Ti存在,可能与使用的钛粉和铝粉的原料颗粒较粗有关.  相似文献   

2.
利用磁控溅射,采用钛靶和铝靶按照一定功率比在SiC纤维表面沉积钛与铝,制备SiC纤维的Ti-Al基复合先驱丝,按密排堆垛置于包套之中并经热等静压制备碳化硅纤维增强钛铝基试样。通过扫描电镜观察组织形貌,研究热等静压及真空热处理对组织结构、界面反应层的影响,应用XRD与能谱分析,研究磁控溅射功率对原子比的影响以及钛铝原位反应过程中相比例的变化规律,采用差示扫描量热法(DSC,differential scanning calorimetry)对钛铝反应进行动力学分析。结果表明,钛靶与铝靶的溅射功率直接影响钛铝的原子比,TC4和Al靶功率分别为13和4.5 kW/m2,其铝含量为27at%;TC4和Al靶功率分别为13和8.3 kW/m2,其铝含量为49at%。此外,动力学研究表明,Al3Ti是钛铝反应的优先生成相,随着Al的扩散,逐渐形成TiAl、Al2Ti和Ti3Al,但经过Al的充分扩散,其最终形成的稳定相取决于钛铝的原子比,若原子比为1:1,则最终形成TiAl相,且不同原子比区域形成的TiAl、Ti3Al可共存。  相似文献   

3.
以钛粉、硅粉和石墨粉为原料,制备出(1-x)Ti3SiC2+xSiC(x=0.1~0.8)复合材料,并利用X射线衍射仪对样品进行相组成分析.结果表明经1300℃放电等离子烧结15min后,可以得到纯净的0.9Ti3SiC2-0.1SiC和含有 微量石墨的0.2Ti3SiC2-0.8SiC复合材料,0.9Ti3SiC2-0.1SiC和0.2Ti3SiC2-0.8SiC复合材料的显微硬度分别为8.8和10.5GPa,均明显高于Ti3SiC2的(4GPa).随着SiC含量的增加,复合材料的硬度也增加,但杂质(石墨)和孔洞的含量也增多,成分为0.5Ti3SiC2-0.5SiC的复合材料在烧结过程中有少量Si流出;而当SiC含量增加到0.2Ti3SiC2-0.8SiC时,烧结过程中大量的Si流出使得复合材料无法成功烧结.  相似文献   

4.
Si掺杂放电等离子合成Ti2AlC/Ti3AlC2材料及理论分析   总被引:4,自引:0,他引:4  
以Ti粉、Al粉、活性炭和Si粉为原料,采用放电等离子工艺分别以摩尔比为2.0Ti/1.1Al/1.0C、2.0Ti/1.0Al/0.1Si/1.0C、2.0Ti/1.0Al/0.2Si/1.0C、2.0Ti/0.9Al/0.2Si/1.0C和2.0Ti/1.0Al/0.3Si/1.0C,在1 200 ℃合成了Ti2AlC/Ti3AlC2块体材料.通过合成试样的X射线衍射谱,确定了放电等离子合成试样的物相组成,并用扫描电镜结合能谱仪观察了合成试样的显微结构和微区成分.结果表明:以2.0Ti/1.1Al/1.0C为原料放电等离子合成了层状结构明显的Ti2AlC材料;掺Si后所有试样都由Ti2AlC、Ti3AlC2和Ti3SiC2 3种物相组成;当掺Si量逐渐增大,即Al与Si的量比减小时,试样中Ti3AlC2和Ti3SiC2的含量增加,而Ti2AlC的含量降低,同时颗粒得到细化.应用量子化学计算结果解释了掺Si后不利于Ti2AlC的生成,而有利于Ti3AlC2的生成机理,说明了掺Si后固溶体的产生过程.  相似文献   

5.
电弧熔覆Ti-Si金属间化合物表面层的组织与性能   总被引:1,自引:1,他引:0       下载免费PDF全文
采用在纯钛基体上预敷硅粉,然后进行电弧熔覆的表面处理技术,通过改变焊接电流调整预敷硅粉与纯钛基体的熔化量,制备Ti-Si金属间化合物表面层,使基体获得表面冶金强化.用金相显微镜、扫描电镜和X射线衍射仪,对表面层的微观结构及界面进行了分析研究,并测试了显微硬度分布和耐磨性.结果表明,随着焊接电流增加,表面层的显微组织类型由亚共品到共晶,最后为过共晶.Ti5Si3相使表面层具有较高的硬度,耐磨性比纯钛基体有明显提高.  相似文献   

6.
钛铝基合金渗硅层结构及抗高温氧化性能初探   总被引:6,自引:0,他引:6  
研究了钛铝基合金固体渗硅后的渗层结构、抗高温循环氧化性能。结果表明:钛铝基合金固体渗硅后表层形成主要由Ti5Si3、Al3O3和Al3Ti、TiSi2、Si构成的复合渗层,该复合渗硅层有效阻止了高温氧化过程的进行,显著提高了钛铝基合金的抗高温循环氧化能力。  相似文献   

7.
采用扫描电镜和能谱分析了泡沫Al-Si-Cu合金发泡过程的微观结构演变。将Al粉、Cu粉、Si粉按照89:6:5(质量比)混粉,并添加发泡剂2%TiH2 (质量分数)和增稠剂1.5%MnO2 (质量分数),经过500℃热压后,泡沫铝可在640℃/12~20min发泡。微观结构分析显示,发泡前泡沫铝呈现球形的Si、Al2Cu、块状Ti H2和扁片状Mn O2相,发泡后泡沫铝孔壁内存在3类析出相:晶内细小的Si、Al2Cu颗粒;晶界粗大离异共晶Si、Al2Cu相;随机分布的块状Al-Mn相、MnO2相和球形富Ti相。其中富Ti相是由Ti H2分解H2后,与铝液反应产生的,具有2种不同的类型。2类析出相心部都为Ti颗粒,第1类内壳为τ2(Al14Ti33Si53)相薄层,外壳呈现枝晶形貌的τ1(Al20Ti32Si48)和τ2相;第2类外部为块状交替分布的τ1和(Al, Si)3Ti相。第1类富Ti相的Si成分明显高于第2类,可能是2类富Ti相分别形成于铝液中的富Si和贫Si区造成的。对泡沫铝发泡过程微观结构的分析有助于设计高性能可强化的泡沫铝。  相似文献   

8.
采用XD法原位合成TiCp/Al预制块, 并通过XRD、 SEM、 EDAX和DTA等手段研究了预制块的组织和性能, 探讨了TiCp/Al预制块在镁液中的熔化行为. 结果表明: TiCp/Al预制块中, 基体Al的熔点约为635.7.℃, 略低于纯铝的熔点, 但TiC粒子之间存在较强的结合力, 使其在高温加热时仍能保持原有形状; 未搅拌时, TiCp/Al预制块在800.℃的镁液中保温60.min后仍不熔化, 采用搅拌工艺有利于促进TiCp/Al预制块的熔化, 并且使TiC粒子在熔体中均匀分布. TiCp/Al预制块在镁液中熔化时, 基体Al通过熔化和对流扩散进入到镁液中, TiC粒子间的较强的结合力需通过搅拌产生的剪切力才能破坏, 并随镁液流动进入到镁液中. 机械搅拌可使TiC粒子在镁液中均匀分布.  相似文献   

9.
采用钨极惰性气体(TIG)在铸态A380铝合金表面制备复合涂层。将Al,Si和SiC粉末混合物与硅酸钠溶液混合后涂覆在基材上,采用TIG焊进行表面熔化,在基体表面制备Al-SiC涂层。采用XRD、SEM和EDS研究显微组织的变化,采用显微硬度和滑动磨损试验研究包覆层的性能。结果表明,SiC粒子均匀分布在树枝状的铝基体中。加入过量的硅造成包覆层共晶和粗大硅粒子的形成,从而导致包覆层具有较高的硬度和耐磨性。  相似文献   

10.
使用扫描电子显微镜(SEM)、电子能谱仪(EDS)、X射线衍射仪(XRD)对经950~1100℃热处理的SiC/Ti3Al平面界面偶界面固相反应层的成分分布、微结构及相组成等进行了分析研究,讨论了SiC/Ti3Al界面固相反应机制,并对热处理过程中反应层成长的动力学过程进行了探讨,获得相应的动力学方程.结果表明,SiC/Ti3Al界面固相反应层主要由TiC、Ti5Si3Cx及Ti2(Al,Si)构成.SiC/Ti3Al界面固相反应的发生归因于TiC和Ti5Si3Cx数值大的负吉布斯自由能变化.SiC/Ti3Al界面固相反应层遵循抛物线生长规律,为扩散控制的反应过程,反应速率常数为:K=1.81×10-5 exp(-259×103/RT),m2/s.  相似文献   

11.
铌基超高温合金包埋渗铝改性硅化物涂层结构   总被引:1,自引:0,他引:1  
利用包埋渗法在新型铌基超高温合金表面制备了铝改性的硅化物抗氧化涂层,分析了涂层的相组成、结构及其组织形成过程。涂层制备采用先在1150℃包埋渗硅4h,然后再于800-1000℃包埋渗铝4h的方法。结果表明:渗硅后涂层的相组成为(Nb,X)Si2(X代表Ti,Cr和Hf元素);再于各温度包埋渗铝后,(Nb,X)Si2层中的平均铝含量随包埋渗铝温度的升高而增加,最高可达10.84at%;当包埋渗铝温度为860-1000℃时会在渗硅层与基体间形成新的铌铝金属间化合物层,且渗入(Nb,X)Si2层中的铝会在局部形成Nb3Si5Al2相。  相似文献   

12.
以Ti粉、Al粉、活性炭和Si粉为原料,采用放电等离子工艺分别以摩尔比为2.0Ti/1.1Al/1.0C、2.OTi/l.0Al/0.1Si/1.0C、2.0Til1.0Al/0.2Si/1.0C、2.0Ti/0、9Al/0.2Si/1.0(2和2.0Ti/1.0Al/0.3Si/1.0C,在1200℃合成了Ti2AlC/Ti3AlC2块体材料。通过合成试样的X射线衍射谱,确定了放电等离子合成试样的物相组成,并用扫描电镜结合能谱仪观察了合成试样的显微结构和微区成分。结果表明:以2.0Ti/1.1Al/1.0C为原料放电等离子合成了层状结构明显的Ti2AlC材料;掺Si后所有试样都由Ti2AlC、Ti3AlC2和Ti3SiC23种物相组成;当掺Si量逐渐增大,即Al与Si的量比减小时,试样中Ti3AlC2和Ti3SiC2的含量增加,而Ti2AlC的含量降低,同时颗粒得到细化。应用量子化学计算结果解释了掺Si后不利于Ti2AlC的生成,而有利于Ti3AlC2的生成机理,说明了掺Si后固溶体的产生过程。  相似文献   

13.
目的 研究热成形钢热浸镀铝硅镀层的微观组织与物相组成.方法 利用扫描电镜(SEM)和能谱仪(EDS)分析铝硅镀层表面与截面的微观组织形貌与成分,利用X射线衍射(XRD)和电子背散射衍射技术(EBSD)分析铝硅镀层的物相组成与比例.结果 热浸镀铝硅镀层表面由富Al相、少量的富Fe相以及树枝晶网状分布的高Si相构成,截面是由内外两层组成,其靠近铁基体的内层为Fe-Al-Si合金层,外层为Al-Si层.进一步的研究显示,Al-Si层由富Al相、少量的富Fe相以及柱状分布的高Si相构成,高Si相主要存在于合金层与铝硅层界面以及Al-Si层中.结论 热浸镀铝硅镀层中富Al相、富Fe相、高Si相和Fe-Al-Si三元合金层的物相分别为Al、Al13Fe4、Si和Al8Fe2Si.对热浸镀铝硅镀层中高Si相的研究显示,分布于合金层与铝硅层界面处的高Si相,可以有效阻碍镀层的生长,而分布于铝硅层中的高Si相在空间中以立体网状骨架的结构形式存在,这种立体网状结构形式作为镀层的主体框架,可以有效地提高镀层的强韧性和成形性能.  相似文献   

14.
Al—Ti—C在铝熔体中的原位反应及其细化作用   总被引:2,自引:1,他引:1  
将Al粉、Ti粉和C粉压制成Al-Ti-C预制块,在纯铝熔体中进行原位合成反应.浇注西20 mm×80 mm的金属型试样.利用X-ray衍射仪和电子探针(EPMA)分析了原位反应生成相.结果表明,在实验条件下,原位反应后的试样组织为α(Al) Al3Ti TiC.然后将自制的Al-Ti-C中间合金作为细化剂加入到铸造铝硅合金中,可使其抗拉强度提高约7%.TiC颗粒起到了异质形核剂的作用.  相似文献   

15.
采用PIRAC技术处理后SiC表面的涂覆层由Cr3 Si,Cr7C3,Cr23C6等组成.通过等离子堆焊_后送粉技术制备SiC增强铁基合金复合涂层.结果表明,未预涂覆SiC颗粒在涂层表层完全分解,由于分解产物碳、硅扩散不均匀,影响了各区域的成分.上部出现大量初生多边形状碳化物,中部为树枝晶,底部为不规则胞状晶.预涂覆SiC颗粒分布在涂层表面上,没有发生明显溶解,原始形态保持完好.SiC颗粒与基体之间包括界面反应区和过渡区,界面反应区由(Fe,Cr)7C3,(Fe,Cr) 23 C6碳化物和α-(Fe,Cr)固溶体组成;过渡区为固溶较多Cr元素的α-(Fe,Cr)固溶体,耐蚀性较好,形貌难以显示.  相似文献   

16.
表面渗硅处理提高钛铝基合金高温抗氧化性   总被引:10,自引:0,他引:10  
使用Al-Si合金熔体对钛铝基合金进行表面渗硅处理,在表层发生了不同程度的界面反应,生成成分比较不同的以Si,Ti,Al三元互为主的物相,表面渗硅处理可明显增强钛铝基合金的高温抗氧化性,使1173K,100h的恒温氧化后,表面涂层氧化生成致密的Si-Ti-Al-O复杂氧化物,而且表面涂层与TiAl基体之间还发生了一定程度的界面反应,生成Ti-Si及TiAl2化合物。对于1053K渗硅处理的试样,在恒温氧化过程中,表面Si-Ti-Al化合物的局部区域已经转化成为更加稳定的Ti-Si化合物。  相似文献   

17.
以Ti粉、Si粉、铝粉、石墨为原料,在1600℃热压烧结制得试样,对不同配比Ti3SiC2、Ti3AlC2复相材料在1100~1500℃下恒温氧化20h的氧化行为进行研究.结果表明:热压法制备Ti3SiC2、Ti3AlC2复相材料在高温下具有比Ti3SiC2和Ti3AlC2更优良的高温抗氧化性能;由于试样氧化过程中产生了TiO2、SiO2、Al2TiO5和α-Al2O3,可有效提高试样的高温抗氧化能力.  相似文献   

18.
通过SiC/Ti6Al4V钛基复合材料的制备及在不同条件下的热处理试验,利用SEM,EDS及XRD分析技术研究复合材料界面反应产物相的形成及反应元素的扩散路径。结果表明:反应元素如C,Ti,Si在界面反应层中出现浓度波动,合金元素Al并没有显著扩散进入界面反应产物层,而是在界面反应前沿堆积,其界面反应产物被确认为Ti3SiC2,TiCx,Ti5Si3C,和Ti3Si;在界面反应初期,存在着TiC+Ti5Si3Cx双相区,当形成各界面反应产物单相区时,SiC/Ti6Al4V复合材料界面反应扩散的完整路径应为:SiC | Ti3SiC2 | Ti5Si3Cx | TiCx | Ti3Si| Ti6Al4V+TiCx;界面反应产物层的生长受扩散控制,遵循抛物线生长规律,其生长激活能Q^k及k0分别为290.935 kJ·mol^-1,2.49× 10^-2 m·s^-1/2.  相似文献   

19.
以铝粉、钛粉、石墨粉和纳米碳化硅粉末为原料,采用自蔓延高温合成法制备了Al-Ti-C-SiC中间合金。借助X射线衍射、扫描电镜(SEM)和差热分析(DSC)研究了不同质量分数SiC纳米颗粒对Al-Ti-C自蔓延高温合成反应合成产物的组成成分和TiC组织形态的影响。结果表明:随着SiC质量分数的增加,体系中的TiC数量增加,Al_3Ti数量减少,反应生成的Si在铝中溶解生成Al-Si合金;SiC的加入使得TiC的粒度增大,晶粒球化。  相似文献   

20.
SiC纤维增强钛基复合材料的界面反应   总被引:1,自引:0,他引:1  
张国兴  康强  李阁平  石南林  李东 《金属学报》2002,38(Z1):474-476
采用真空热压工艺制备了界面结合良好的SiC纤维增强钛基复合材料,并对其界面和SiC纤维进行了透射电镜分析.结果表明,针状β-SiC晶粒沿纤维径向生长,呈辐射状分布;在复合材料的热压制备过程中,Si和C由SiC纤维向钛基体扩散,Ti则向SiC纤维扩散,形成了TiC和Ti5Si3等产物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号