首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Based on the universal approximation property of the fuzzy-neural networks, an adaptive fuzzy-neural observer design algorithm is studied for a class of nonlinear SISO systems with both a completely unknown function and an unknown dead-zone input. The fuzzy-neural networks are used to approximate the unknown nonlinear function. Because it is assumed that the system states are unmeasured, an observer needs to be designed to estimate those unmeasured states. In the previous works with the observer design based on the universal approximator, when the dead-zone input appears it is ignored and the stability of the closed-loop system will be affected. In this paper, the proposed algorithm overcomes the affections of dead-zone input for the stability of the systems. Moreover, the dead-zone parameters are assumed to be unknown and will be adjusted adaptively as well as the sign function being introduced to compensate the dead-zone. With the aid of the Lyapunov analysis method, the stability of the closed-loop system is proven. A simulation example is provided to illustrate the feasibility of the control algorithm presented in this paper.  相似文献   

2.
In this paper, the global output tracking is investigated for a class of uncertain nonlinear hysteretic systems with nonaffine structures. By combining the solution properties of the hysteresis model with the novel backstepping approach, a robust adaptive control algorithm is developed without constructing a hysteresis inverse. The proposed control scheme is further modified to tackle the bounded disturbances by adaptively estimating their bounds. It is rigorously proven that the designed adaptive controllers can guarantee global stability of the closed-loop system. Two numerical examples are provided to show the effectiveness of the proposed control schemes.  相似文献   

3.
This article focuses on robust adaptive sliding mode control law for uncertain discrete systems with unknown time-varying delay input, where the uncertainty is assumed unknown. The main results of this paper are divided into three phases. In the first phase, we propose a new sliding surface is derived within the Linear Matrix Inequalities (LMIs). In the second phase, using the new sliding surface, the novel Robust Sliding Mode Control (RSMC) is proposed where the upper bound of uncertainty is supposed known. Finally, the novel approach of Robust Adaptive Sliding ModeControl (RASMC) has been defined for this type of systems, where the upper limit of uncertainty which is assumed unknown. In this new approach, we have estimate the upper limit of uncertainties and we have determined the control law based on a sliding surface that will converge to zero. This novel control laws are been validated in simulation on an uncertain numerical system with good results and comparative study. This efficiency is emphasized through the application of the new controls on the two physical systems which are the process trainer PT326 and hydraulic system two tanks.  相似文献   

4.
In this paper, the event-triggered adaptive control for a class of nonlinear systems in Brunovsky form is considered. The sensors are event-triggered thus the states are transmitted only at the discrete triggering points, which are more efficient in using communication bandwidth. To solve this problem, we design a set of event-triggered conditions and based on which the controller and parameter estimator are designed without the ISS assumption. It is shown that the proposed control schemes guarantee that all the closed-loop signals are semi-globally bounded and the stabilization error converges to the origin asymptotically. The Zeno behavior is also excluded. Simulation results illustrate the effectiveness of our scheme.  相似文献   

5.
6.
7.
8.
The underwater glider changes its direction to follow the preset path in the horizontal plane only by flapping its vertical rudder. Heading tracking control plays the core role in the navigation process. To deal with non-linear flow disturbance and saturation in actuator, a new hybrid heading tracking control algorithm was presented, which integrated an adaptive fuzzy incremental PID (AFIPID) and an anti-windup (AW) compensator to improve the adaptability and robustness of underwater glider's heading control. The dynamic model of an underwater glider named as Petrel-II 200 was modeled to serve as a controlled plant. The proposed heading tracking control algorithm was described in detail, where the rudder angle, a control quantum to the controlled plant were calculated to get forces and moments required for the desired glider heading. A closed loop motion control system with desired heading angle as input and actual heading angle output was put forward, which included the dynamic model of the Petrel-II 200 and the given heading tracking control algorithm. The simulations followed three typical mathematical signals and the experimental tests were carried out by taking in the dynamic parameters of the controlled plant. And the effectiveness of the proposed control algorithm was assessed and verified.  相似文献   

9.
Adaptive nonlinear control is investigated for continuously stirred tank reactor (CSTR) systems using neural networks. The CSTR plant under study belongs to a class of nonaffine nonlinear systems, and contains an unknown parameter that enters the model nonlinearly. Using adaptive backstepping and neural network (NN) approximation techniques, an alternative adaptive NN controller is developed that achieves asymptotic output tracking control. A novel integral-type Lyapunov function, which includes both system states and control input as its arguments, is constructed to solve the difficulty associated with the nonaffine control problem. Numerical simulation is performed to show the feasibility of the proposed approach for chemical process control.  相似文献   

10.
Sliding mode control with self-tuning law for uncertain nonlinear systems   总被引:2,自引:0,他引:2  
A robust sliding mode control that follows a self-tuning law for nonlinear systems possessing uncertain parameters is proposed. The adjustable control gain and a bipolar sigmoid function are on-line tuned to force the tracking error to approach zero. Control system stability is ensured using the Lyapunov method. Both simulation and experimental application of a planetary gear type inverted pendulum control system verify the effectiveness of the developed approach.  相似文献   

11.
We develop a novel adaptive tuning method for classical proportional–integral–derivative (PID) controller to control nonlinear processes to adjust PID gains, a problem which is very difficult to overcome in the classical PID controllers. By incorporating classical PID control, which is well-known in industry, to the control of nonlinear processes, we introduce a method which can readily be used by the industry. In this method, controller design does not require a first principal model of the process which is usually very difficult to obtain. Instead, it depends on a fuzzy process model which is constructed from the measured input–output data of the process. A soft limiter is used to impose industrial limits on the control input. The performance of the system is successfully tested on the bioreactor, a highly nonlinear process involving instabilities. Several tests showed the method's success in tracking, robustness to noise, and adaptation properties. We as well compared our system's performance to those of a plant with altered parameters with measurement noise, and obtained less ringing and better tracking. To conclude, we present a novel adaptive control method that is built upon the well-known PID architecture that successfully controls highly nonlinear industrial processes, even under conditions such as strong parameter variations, noise, and instabilities.  相似文献   

12.
一种新的自适应PID控制算法   总被引:10,自引:0,他引:10  
针对大惯性工业对象,设计了一种新的自适应PID调节器控制算法并应用手工业温度控制系统中,实验结果表明,利用人工智能算法与PID自适应算法的有机结合,可以使温度控制曲线在不同的阶段平滑过渡,使系统控制过程达到最优。  相似文献   

13.
This paper is concerned with the adaptive bipartite output consensus tracking problem of high-order nonlinear coopetition multi-agent systems with input saturation under a signed directed graph. A distributed fuzzy-based command filtered backstepping scheme is proposed, where the unknown nonlinear dynamics are approximated by the fuzzy logic system (FLS). The errors compensation mechanism is constructed to eliminate the errors caused by filters. Under the proposed control scheme, we only need to design one adaptive law for each agent, and it is proved that the bipartite output tracking errors converge into the desired neighborhood and all the closed-loop signals are bounded although the input saturation exists. Two numerical examples are included to verify the effectiveness of given scheme.  相似文献   

14.
Ho HF  Wong YK  Rad AB 《ISA transactions》2008,47(3):286-299
Adaptive fuzzy control is proposed for a class of affine nonlinear systems in strict-feedback form with unknown nonlinearities. The unknown nonlinearities include two types of nonlinear functions: one satisfies the "triangularity condition" and can be directly approximated by fuzzy logic system, while the other is assumed to be partially known and consists of parametric uncertainties. Takagi-Sugeno type fuzzy approximators are used to approximate unknown system nonlinearities and the design procedure is a combination of adaptive backstepping and generalized small gain design techniques. It is proved that the proposed adaptive control scheme can guarantee the uniformly ultimately bounded (UBB) stability of the closed-loop systems. Simulation studies are shown to illustrate the effectiveness of the proposed approach.  相似文献   

15.
A recently developed tuning method is compared to an adaptive Smith Predictor control strategy. The robustness of each method is considered for time-varying plant parameters. Examples with simulations are provided to compare the methods and present conclusions on the advantages and disadvantages of each.  相似文献   

16.
In this paper, we propose a decentralized adaptive control scheme for a class of interconnected strict-feedback nonlinear systems without a priori knowledge of subsystems' control directions. To address this problem, a novel Nussbaum-type function is proposed and a key theorem is drawn which involves quantifying the interconnections of multiple Nussbaum-type functions of the subsystems with different control directions in a single inequality. Global stability of the closed-loop system and asymptotic stabilization of subsystems' output are proved and a simulation example is given to illustrate the effectiveness of the proposed control scheme.  相似文献   

17.
This paper presents an adaptive iterative learning control scheme for a class of nonlinear systems with unknown time-varying delays and control direction preceded by unknown nonlinear backlash-like hysteresis. Boundary layer function is introduced to construct an auxiliary error variable, which relaxes the identical initial condition assumption of iterative learning control. For the controller design, integral Lyapunov function candidate is used, which avoids the possible singularity problem by introducing hyperbolic tangent funciton. After compensating for uncertainties with time-varying delays by combining appropriate Lyapunov-Krasovskii function with Young's inequality, an adaptive iterative learning control scheme is designed through neural approximation technique and Nussbaum function method. On the basis of the hyperbolic tangent function's characteristics, the system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapunov-like composite energy function (CEF) in two cases, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.  相似文献   

18.
The paper addresses the finite-time convergence problem of a uncalibrated camera-robot system with uncertainties. These uncertainties include camera extrinsic and intrinsic parameters, robot dynamics and feature depth parameters, which are all considered as time-varying uncertainties. In order to achieve a better dynamic stability performance of the camera-robot system, a novel FTS adaptive controller is presented to cope with rapid convergence problem. Meanwhile, FTS adaptive laws are proposed to handle these uncertainties which exist both in robot and in camera model. The finite-time stability analysis is discussed in accordance with homogeneous theory and Lyapunov function formalism. The control method we proposed extends the asymptotic stability results of visual servoing control to a finite-time stability. Simulation has been conducted to demonstrate the performance of the trajectory tracking errors convergence under control of the proposed method.  相似文献   

19.
This paper addresses the problem of global output feedback control for a class of nonlinear time-delay systems. The nonlinearities are dominated by a triangular form satisfying linear growth condition in the unmeasurable states with an unknown growth rate. With a change of coordinates, a linear-like controller is constructed, which avoids the repeated derivatives of the nonlinearities depending on the observer states and the dynamic gain in backstepping approach and therefore, simplifies the design procedure. Using the idea of universal control, we explicitly construct a universal-type adaptive output feedback controller which globally regulates all the states of the nonlinear time-delay systems.  相似文献   

20.
This paper presents a robust adaptive neural networks control strategy for spacecraft rendezvous and docking with the coupled position and attitude dynamics under input saturation. Backstepping technique is applied to design a relative attitude controller and a relative position controller, respectively. The dynamics uncertainties are approximated by radial basis function neural networks (RBFNNs). A novel switching controller consists of an adaptive neural networks controller dominating in its active region combined with an extra robust controller to avoid invalidation of the RBFNNs destroying stability of the system outside the neural active region. An auxiliary signal is introduced to compensate the input saturation with anti-windup technique, and a command filter is employed to approximate derivative of the virtual control in the backstepping procedure. Globally uniformly ultimately bounded of the relative states is proved via Lyapunov theory. Simulation example demonstrates effectiveness of the proposed control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号