首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymer dielectrics with high breakdown strength (Eb) and high efficiency are urgently demanded in advanced electrical and electronic systems, yet their energy density (Ue) is limited due to low dielectric constant (εr) and high loss at elevated temperatures. Conventional inorganic fillers with diameters from nano to micrometers can only increase εr at the cost of compromised Eb and Ue due to their poor compatibility with polymer matrix. Herein, hydroxyapatite (HAP) sub-nanowires with a diameter of ≈0.9 nm are incorporated in polyetherimide (PEI) matrix to form HAP/PEI sub-nanocomposites. εr and Eb of the composites are concomitantly enhanced with only 0.5 wt.% of HAP sub-nanowires, leading to high Ue of 5.14 (@150 °C) and 3.1 J cm−3 (@200 °C) with efficiency of 90% and high-temperature stability up to 3 × 105 charge-discharge cycles at 200 °C. Microstructural analysis and molecular dynamics simulations indicate that the sub-nanowires with comparable diameter as polymer chains induce enormous interfacial area, substantially increase mobility of polymer chains and form dense traps for charge carriers. This work extends the current research scope of polymer-inorganics composite dielectrics to the sub-nano-level incorporation and provides a novel strategy for fabricating high performance polymer dielectrics at elevated temperatures.  相似文献   

2.
A new class of trilayered architecture blends polymer-based nanocomposites with excellent discharge energy densities (Udis) is presented. The preferable energy storage performance is achieved in sandwich structured nanocomposite (PIP) films. The outer polarization-layers (P-layer) of the PIP film are composed of Sr2Nb2O7 nanosheets (SNONSs) as well as boron nitride nanosheets (BNNSs) dispersed in poly(vinylidene fluoride) (PVDF)/ polymethyl methacrylate (PMMA) blend polymer matrix (BPM) to provide high dielectric constant, while PVDF/PMMA with BNNSs forms the central insulation-layer (I-layer) to offer high dielectric breakdown strength (Eb) of the resulting nanocomposite films. The dielectric performance, Weibull breakdown strength, and energy storage capacity of single and multi-layer nanocomposites as a function of filler content are systematically examined. The evolution of electric trees is simulated via finite element methods to verify the experimental dielectric breakdown results in single layer nanocomposite films. The PIP film with optimized filler content displays a discharge energy density of 31.42 J cm−3 with a significantly improved charge–discharge efficiency of ≈71% near the Weibull breakdown strength of 655.16 MV m−1, which is the highest among the polymer-based nanocomposites under the equivalent dielectric breakdown strength at present.  相似文献   

3.
In this work, p-type polymer semiconductor poly(2-((3,6,7,10,11-pentakis (hexyloxy) triphenylene-2-yl)oxy)ethyl methacrylate) (PMHT) is added into polyetherimide (PEI). Benefiting from the electrostatic interaction between strong electrophilic charged phenyls of the PEI matrix and strong electronegative benzophenanthrene unit of the PMHT filler, the physical cross-linked networks are formed in polymer blends. Meanwhile, the lowest unoccupied molecular orbital level of PEI is close to the highest occupied molecular orbital level of PMHT, which is easy to establish electron–hole pair by Coulomb force. Thus, the carrier trap is constructed in the heterojunction region between PMHT filler and PEI matrix. Both physically cross-linked networks and electron–hole pairs can promote breakdown strength (Eb) of PEI and decrease energy loss. Importantly, PMHT filler can improve the dielectric constant of PEI. As a result, 0.75 wt% PMHT/PEI delivers an ultrahigh discharge energy density (Ud) of 10.7 J cm−3 at an Eb of 680 MV m−1 and at room temperature, and maintains a charge and discharge efficiency of above 90%. In addition, a superior Ud of 5.1 and 3.3 J cm−3 is achieved at 150 and 200 °C, respectively. This paper creates a new perspective for preparing high-properties polymer dielectrics by combining the advantages of cross-linking and electron–hole pairs.  相似文献   

4.
Dielectric capacitors play a vital role in advanced electronics and power systems as a medium of energy storage and conversion. Achieving ultrahigh energy density at low electric field/voltage, however, remains a challenge for insulating dielectric materials. Taking advantage of the phase transition in antiferroelectric (AFE) film PbZrO3 (PZO), a small amount of isovalent (Sr2+) / aliovalent (La3+) dopants are introduced to form a hierarchical domain structure to increase the polarization and enhance the backward switching field EA simultaneously, while maintaining a stable forward switching field EF. An ultrahigh energy density of 50 J cm−3 is achieved for the nominal Pb0.925La0.05ZrO3 (PLZ5) films at low electric fields of 1 MV cm−1, exceeding the current dielectric energy storage films at similar electric field. This study opens a new avenue to enhance energy density of AFE materials at low field/voltage based on a gradient-relaxor AFE strategy, which has significant implications for the development of new dielectric materials that can operate at low field/voltage while still delivering high energy density.  相似文献   

5.
High-temperature dielectric materials for capacitive energy storage are in urgent demand for modern power electronic and electrical systems. However, the drastically degraded energy storage capabilities owing to the inevitable conduction loss severely limit the utility of dielectric polymers at elevated temperatures. Herein, a new approach based on the in situ preparation of oxides onto polyimide (PI) films to high-temperature laminated polymer dielectrics is described. As confirmed by computational simulations, the charge injection at the electrode/dielectric interface and electrical conduction in dielectric films are substantially depressed via engineering the in situ prepared oxide layer in the laminated composites. Consequently, ultrahigh dielectric energy densities and high efficiencies are simultaneously achieved at elevated temperatures. Especially, an excellent energy density of 1.59 J cm−3 at a charge–discharge efficiency of above 90% has been achieved at 200 °C, outperforming the current dielectric polymers and composites. Together with its excellent discharging capability and cyclic reliability, the laminate-structured film is demonstrated to be a promising class of polymer dielectrics for high-power energy storage capacitors operating at elevated temperatures. The facile preparation method reported herein is readily adaptable to a variety of polymer thin films for energy applications under extreme environments.  相似文献   

6.
Dielectric capacitors with high power densities are crucial for pulsed electronic devices and clean energy technologies. However, their breakdown strengths (Eb) strongly limit their power densities. Herein, by modifying the interfacial polarization by adjusting the difference in activation energies (Δϕ) between the grain and grain boundary phases, the significant enhancement of Eb in the (1-x)(0.94Na0.5Bi0.5TiO3-0.06BaTiO3)-xCa0.7La0.2TiO3 (NBT-BT-xCLT, x = 0, 0.18, 0.23, 0.28, 0.33, 0.38, and 0.43) ceramics is achieved. The results indicate that adding CLT introduces a super-paraelectric state, refines grain size, and, most importantly, decreases the Δϕ value. When Δϕ is tuned close to zero in the specific NBT-BT-0.38CLT sample, a significant boost in Eb value of 64 kV mm−1 is obtained. As a result, the recoverable energy storage density of the ceramics reaches an unprecedented giant value of 15.1 J cm−3 together with a high efficiency of 82.4%, as well as ultrafast discharge rate of 32 ns, and high thermal and frequency stability. The results demonstrate that interfacial polarization engineering holds huge promise for the development of dielectrics with high-energy-storage performance.  相似文献   

7.
Nonvolatile OFET memory devices using different pPFPA/bPEI cross-linked polymers as the dielectric layer are fabricated. The influence of bPEI content on the electrical property and memory performance of devices are systematically investigated. The results demonstrate that the introduction of bPEI into pPFPA can significantly enhance the capacitance and dielectric constant of the pPFPA/bPEI cross-linked polymer dielectrics, but it also causes a slight increase in the leakage current density. Besides, the excess bPEI induces more morphology defects of the semiconductor film, leading to an apparent decrement in charge mobility. Transistors with the 119:250 pPFPA/bPEI dielectric layer exhibit the highest on/off current ratio (~107 at Vg = − 20V) and a relatively low hole mobility of 0.38 cm2 V−1s−1. Moreover, the corresponding memory devices show good reliability in information record with a data retention time over 105 s, indicating that an appropriate amount of bPEI is crucial for improving the stability of the memory devices.  相似文献   

8.
We have studied the properties of polymer-based thick film layers by electro-ultrasonic spectroscopy. Electro-ultrasonic spectroscopy method is based on the interaction between ultrasonic vibrations and electrical conductivity of solids. The ultrasonic vibrations of frequency fU change the contact area between conducting grains in the thick film structure and then the resistance is modulated by the frequency of ultrasonic excitation. An intermodulation voltage is created on this structure. It depends on the value of AC current varying with frequency fE and on the ultrasonic excited resistance change ΔR varying with frequency fU. We have measured the intermodulation voltage Um for a set of polymer-based thick film resistors made by different resistive pastes. It was found that for given sample the intermodulation component of frequency fm = fE − fU increases linearly with electric excitation for the constant ultrasonic excitation. We have normalized the intermodulation voltage Um by the electric current IE and this quantity is proportional to the ultrasonic excited resistance change ΔR. The relative resistance change ΔR/RX is of the order of 10−7–10−4. From the comparison of the results measured for the samples made by the same resistive pastes it follows, that relative resistance change ΔR/RX can be used as an indicator of sample quality.  相似文献   

9.
Donor–acceptor (D–A) type conjugated polymers have been developed to absorb longer wavelength light in polymer solar cells (PSCs) and to achieve a high charge carrier mobility in organic field-effect transistors (OFETs). PDTDP, containing dithienothiophene (DTT) as the electron donor and diketopyrrolopyrrole (DPP) as the electron acceptor, was synthesized by stille polycondensation in order to achieve the advantages of D–A type conjugated polymers. The polymer showed optical band gaps of 1.44 and 1.42 eV in solution and in film, respectively, and a HOMO level of 5.09 eV. PDTDP and PC71BM blends with 1,8-diiodooctane (DIO) exhibited improved performance in PSCs with a power conversion efficiency (PCE) of 4.45% under AM 1.5G irradiation. By investigating transmission electron microscopy (TEM), atomic force microscopy (AFM), and the light intensity dependence of JSC and VOC, we conclude that DIO acts as a processing additive that helps to form a nanoscale phase separation between donor and acceptor, resulting in an enhancement of μh and μe, which affects the JSC, EQE, and PCE of PSCs. The charge carrier mobilities of PDTDP in OFETs were also investigated at various annealing temperatures and the polymer exhibited the highest hole and electron mobilities of 2.53 cm2 V−1 s−1 at 250 °C and 0.36 cm2 V−1 s−1 at 310 °C, respectively. XRD and AFM results demonstrated that the thermal annealing temperature had a critical effect on the changes in the crystallinity and morphology of the polymer. The low-voltage device was fabricated using high-k dielectric, P(VDF-TrFE) and P(VDF-TrFE-CTFE), and the carrier mobility of PDTDP was reached 0.1 cm2 V−1 s−1 at Vd = −5 V. PDTDP complementary inverters were fabricated, and the high ambipolar characteristics of the polymer resulted in an output voltage gain of more than 25.  相似文献   

10.
High-performance barium titanate (BaTiO3) capacitors with excellent electrical and dielectric properties have been made by a two step deposition scheme using reactive rf magnetron sputtering. A novel double layer structure has been developed to reduce the pinholes and improve the electrical properties, such as higher dielectric constant, lower dissipation factor, higher breakdown fields and low leakage currents. Films deposited on a cooled substrate are amorphous whereas those deposited on a heated substrate are poly crystalline. Both polycrystalline and amorphous natures are verified by x-ray diffraction and scanning electron microscopy. Amorphous films have a low leakage current, a high breakdown voltage up to 2.5 x 106 V/cm, and a dielectric constant less than 20. Polycrystalline films yield a high dielectric constant of 330. However, these films also have large leakage currents. The capacitors with the two layer structures,i.e. amorphous layer on top of polycrystal layer, have been shown to be much superior to those prepared by either polycrystal or amorphous layer alone for practical applications. The dielectric constant and breakdown voltage of capacitors with a double layer are found to be as high as 220 and 1.2 x 106 V/cm, respectively. The leakage current is reduced to the same order as the amorphous films alone.  相似文献   

11.
Ferroelectric polymers have been regarded as the preferred matrix for high-energy-density dielectric polymer nanocomposites because of their highest dielectric constants among the known polymers. Despite a library of ferroelectric polymer-based composites having been demonstrated as highly efficient in enhancing the energy density, the charge–discharge efficiency remains moderate because of the high intrinsic loss of ferroelectric polymers. Herein, a systematic study of the oxide nanofillers is presented with varied dielectric constants and the vital role of the dielectric match between the filler and the polymer matrix on the capacitive performance of the ferroelectric polymer composites is revealed. A combined experimental and simulation study is further performed to specifically investigate the effect of the nanofiller morphology on the electrica properties of the polymer nanocomposites. The solution-processed ferroelectric polymer nanocomposite embedded with Al2O3 nanoplates exhibits markedly improved breakdown strength and discharged energy density along with an exceptional charge–discharge efficiency of 83.4% at 700 MV m−1, which outperforms the ferroelectric polymers and nanocomposites reported to date. This work establishes a facile approach to high-performance ferroelectric polymer composites through capitalizing on the synergistic effect of the dielectric properties and morphology of the oxide fillers.  相似文献   

12.
Metal–insulator–metal (MIM) capacitors with Pr2O3 as high-k material have been investigated for the first time. We varied the thickness of the Pr2O3 layers as well as the bottom electrode material. The layers are characterised using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscopy (TEM) and secondary ion mass spectroscopy (SIMS). Preliminary information on the interaction of water with the films was obtained from XPS and ab initio pseudopotential calculations. The electrical characterisation shows that Pr2O3 MIM capacitors can provide higher capacitance densities than Si3N4 MIM capacitors while still maintaining comparable voltage coefficients of capacitance. The Pr2O3 dielectric material seems to be suitable for use in silicon RF applications.  相似文献   

13.
High permittivity (high-k) gate dielectrics were fabricated using the plasma oxidation of Hf metal/SiO2/Si followed by the post-deposition annealing (PDA), which induced a solid-phase reaction between HfOx and SiO2. The oxidation time and PDA temperature affected the equivalent oxide thickness (EOT) and the leakage current density of the high-k dielectric films. The interfacial structure of the high-k dielectric film/Si was transformed from HfOx/SiO2/Si to HfSixOy/Si after the PDA, which led to a reduction in EOT to 1.15 nm due to a decrease in the thickness of SiO2. These high-k dielectric film structures were investigated by X-ray photoelectron spectroscopy. The leakage current density of high-k dielectric film was approximately four orders of magnitude lower than that of SiO2.  相似文献   

14.
Low-dielectric constant (low-k) films have been prepared by plasma-enhanced chemical vapor deposition (PECVD) from hexamethyldisiloxane (HMDSO) mixed with oxygen or methane. The films are analyzed by ellipsometry, infrared absorption spectroscopy while their electrical properties are deduced from CV, IV and Rf measurements performed on Al/insulator/Si structures. For an oxygen and methane fraction equal to 50% and 22%, respectively, the dielectric constant and losses are decreased compared with those of the film prepared in a pure HMDSO plasma. The effect of adding 22% of CH4 in HMDSO plasma increases the Si–CH3 bonds containing in the polymer film and as the constant of methyl groups in the film increased the dielectric constant of the film decreases. For this film, the dielectric constant is 2.8, the dielectric losses at 1 kHz are equal to 2×10−3, the leakage current density measured for an electric field of 1 MV/cm is 3×10−9 A/cm2 and the breakdown field is close to 5 MV/cm.  相似文献   

15.
Inorganic/organic dielectric composites are very attractive for high energy density electrostatic capacitors. Usually, linear dielectric and ferroelectric materials are chosen as inorganic fillers to improve energy storage performance. Antiferroelectric (AFE) materials, especially single-crystalline AFE oxides, have relatively high efficiency and higher density than linear dielectrics or ferroelectrics. However, adding single-crystalline AFE oxides into polymers to construct composite with improved energy storage performance remains elusive. In this study, high-quality freestanding single-crystalline PbZrO3 membranes are obtained by a water-soluble sacrificial layer method. They exhibit classic AFE behavior and then 2D–2D type PbZrO3/PVDF composites with the different film thicknesses of PbZrO3 (0.1-0.4 µm) is constructed. Their dielectric properties and polarization response improve significantly as compared to pure PVDF and are optimized in the PbZrO3(0.3 µm)/PVDF composite. Consequently, a record-high energy density of 43.3 J cm−3 is achieved at a large breakdown strength of 750 MV m−1. Phase-field simulation indicates that inserting PbZrO3 membranes effectively reduces the breakdown path. Single-crystalline AFE oxide membranes will be useful fillers for composite-based high-power capacitors.  相似文献   

16.
This paper proposed a novel method for constructing quasi-cyclic low-density parity-check (QC-LDPC) codes of medium to high code rates that can be applied in cloud data storage systems, requiring better error correction capabilities. The novelty of this method lies in the construction of sparse base matrices, using a girth greater than 4 that can then be expanded with a lift factor to produce high code rate QC-LDPC codes. Investigations revealed that the proposed large-sized QC-LDPC codes with high code rates displayed low encoding complexities and provided a low bit error rate (BER) of 10−10 at 3.5 dB Eb/N0 than conventional LDPC codes, which showed a BER of 10−7 at 3 dB Eb/N0. Subsequently, implementation of the proposed QC-LDPC code in a software-defined radio, using the NI USRP 2920 hardware platform, was conducted. As a result, a BER of 10−6 at 4.2 dB Eb/N0 was achieved. Then, the performance of the proposed codes based on their encoding–decoding speeds and storage overhead was investigated when applied to a cloud data storage (GCP). Our results revealed that the proposed codes required much less time for encoding and decoding (of data files having a 10 MB size) and produced less storage overhead than the conventional LDPC and Reed–Solomon codes.  相似文献   

17.
Solution-processed dielectric materials with a high dielectric constant (k) have attracted considerable attention due to their potential applications in low-voltage-operating organic field-effect transistors (OFETs) for realizing large-area and low-power electronic devices. In terms of device commercialization, the patterning of each film component via a facile route is an important issue. In this study, we introduce a photo-patternable precursor, zirconium acrylate (ZrA), to fabricate photo-patterned high-k zirconium oxide (ZrOx) dielectric layers with UV light. Solution-processed ZrA films were effectively micro-patterned with UV exposure and developing, and transitioned to ZrOx through a sol-gel reaction during deep-UV annealing. The UV-assisted and ∼10 nm-thick ZrOx dielectric films exhibited a high capacitance (917.13 nF/cm2 at 1 KHz) and low leakage current density (10−7 A/cm2 at 1.94 MV/cm). Those films could be utilized as gate dielectric layers of OFETs after surface modification with ultrathin cyclic olefin copolymer layers. Finally, we successfully fabricated organic complementary inverters exhibiting hysteresis-free operation and high voltage gains of over 42 at low voltages of ≤3 V.  相似文献   

18.
《Solid-state electronics》2004,48(10-11):1801-1807
In this paper, we present a computationally efficient model to calculate the direct tunneling current from an inverted p-type (1 0 0) Si substrate through interfacial SiO2 and high-K gate stacks. This model consists of quantum mechanical calculations for the inversion layer charge density and a modified WKB approximation for the transmission probability. The modeled direct tunneling currents agree well with a self-consistent model and experimental data. For the same effective oxide thickness (EOT) of 2 nm, the direct tunneling current of a HfO2 high-K dielectric (6.4 nm, Kf=25) overlaying a 1 nm thermal oxide is reduced by four orders of magnitude compared with a pure SiO2 film at low gate voltages. The effects of interfacial oxide thickness, dielectric constant and barrier height on the direct tunneling current have also been studied as a function of gate voltages.  相似文献   

19.
Two donor–acceptor (D–A) polymers are obtained by coupling difluoro- and dichloro-substituted forms of the electron-deficient unit BDOPV and the relatively weak donor moiety dichlorodithienylethene (ClTVT). The conductivity and power factors of doped devices are different for the chlorinated and fluorinated BDOPV polymers. A high electron conductivity of 38.3 and 16.1 S cm−1 are obtained from the chlorinated and fluorinated polymers with N-DMBI, respectively, and 12.4 and 2.4 S cm−1 are obtained from the chlorinated and fluorinated polymers with CoCp2, respectively, from drop-cast devices. The corresponding power factors are 22.7, 7.6, 39.5, and 8.0  µ W m−1 K−2, respectively. Doping of PClClTVT with N-DMBI results in excellent air stability; the electron conductivity of devices with 50 mol% N-DMBI as dopant remained up to 4.9 S m−1 after 222 days in the air, the longest for an n-doped polymer stored in air, with a thermoelectric power factor of 9.3  µ W m−1 K−2. However, the conductivity of PFClTVT-based devices can hardly be measured after 103 days. These observations are consistent with morphologies determined by grazing incidence wide angle X-ray scattering and atomic force microscopy.  相似文献   

20.
Solution‐processable thin‐film dielectrics represent an important material family for large‐area, fully‐printed electronics. Yet, in recent years, it has seen only limited development, and has mostly remained confined to pure polymers. Although it is possible to achieve excellent printability, these polymers have low (≈2–5) dielectric constants (εr). There have been recent attempts to use solution‐processed 2D hexagonal boron nitride (h‐BN) as an alternative. However, the deposited h‐BN flakes create porous thin‐films, compromising their mechanical integrity, substrate adhesion, and susceptibility to moisture. These challenges are addressed by developing a “one‐pot” formulation of polyurethane (PU)‐based inks with h‐BN nano‐fillers. The approach enables coating of pinhole‐free, flexible PU+h‐BN dielectric thin‐films. The h‐BN dispersion concentration is optimized with respect to exfoliation yield, optical transparency, and thin‐film uniformity. A maximum εr ≈ 7.57 is achieved, a two‐fold increase over pure PU, with only 0.7 vol% h‐BN in the dielectric thin‐film. A high optical transparency of ≈78.0% (≈0.65% variation) is measured across a 25 cm2 area for a 10 μm thick dielectric. The dielectric property of the composite is also consistent, with a measured areal capacitance variation of <8% across 64 printed capacitors. The formulation represents an optically transparent, flexible thin‐film, with enhanced dielectric constant for printed electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号