首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we present a boundary integral based approach to isogeometric analysis and shape optimization.For analysis, it uses the same basis, Non-Uniform Rational B-Spline (NURBS) basis, for both representing object boundary and for approximating physical fields in analysis via a Boundary-Integral-Equation Method (BIEM). We propose the use of boundary points corresponding to Greville abscissae as collocation points. We conducted h-, p- and k-refinement study for linear elasticity and heat conduction problems. Our numerical experiments show that collocation at Greville abscissae leads to overall better convergence and robustness. Replacing rational B-splines with the linear B-Splines as shape functions for approximating solution space in analysis does not yield significant difference in convergence.For shape optimization, it uses NURBS control points to parameterize the boundary shape. A gradient based optimization approach is adopted where analytical sensitivities of how control points affect objective and constraint functions are derived. Two 3D shape optimization examples are demonstrated.Our study finds that the boundary integral based isogeometric analysis and optimization have the following advantages: (1) the NURBS based boundary integral exhibits superior computational advantages over the usual Lagrange polynomials based BIEM on a per degree-of-freedom basis; (2) it bypasses the need for domain parameterization, a bottleneck in current NURBS based volumetric isogeometric analysis and shape optimization; (3) it offers tighter integration of CAD and analysis since both the geometric models for both analysis and optimization are the same NURBS geometry.  相似文献   

2.
3.
Numerical methods for shape design sensitivity analysis and optimization have been developed for several decades. However, the finite-element-based shape design sensitivity analysis and optimization have experienced some bottleneck problems such as design parameterization and design remodeling during optimization. In this paper, as a remedy for these problems, an isogeometric-based shape design sensitivity analysis and optimization methods are developed incorporating with T-spline basis. In the shape design sensitivity analysis and optimization procedure using a standard finite element approach, the design boundary should be parameterized for the smooth variation of the boundary using a separate geometric modeler, such as a CAD system. Otherwise, the optimal design usually tends to fall into an undesirable irregular shape. In an isogeometric approach, the NURBS basis function that is used in representing the geometric model in the CAD system is directly used in the response analysis, and the design boundary is expressed by the same NURBS function as used in the analysis. Moreover, the smoothness of the NURBS can allow the large perturbation of the design boundary without a severe mesh distortion. Thus, the isogeometric shape design sensitivity analysis is free from remeshing during the optimization process. In addition, the use of T-spline basis instead of NURBS can reduce the number of degrees of freedom, so that the optimal solution can be obtained more efficiently while yielding the same optimum design shape.  相似文献   

4.
A continuum-based design sensitivity analysis (DSA) method is developed for nanoscale structures with surface effects. To account for the effects of precise geometry in the response and the design sensitivity analyses, we employ an isogeometric approach which uses the same NURBS basis functions as used to describe the geometry of CAD. A direct differentiation method is employed to obtain the analytical design sensitivity using a generalized Young-Laplace equation with high-order surface effects. Effective material properties with the surface effects for silver nanowires are measured from a three-point bending test using atomic force microscopy (AFM). The diameter and the suspended length of silver nanowires are considered as sizing and shape design variables, respectively. The design sensitivity expressions are derived with respect to the design parameters and validated comparing with the experimental results from the AFM scanning, showing an acceptable agreement.  相似文献   

5.
In this paper, we present an approach that extends isogeometric shape optimization from optimization of rectangular-like NURBS patches to the optimization of topologically complex geometries. We have successfully applied this approach in designing photonic crystals where complex geometries have been optimized to maximize the band gaps.Salient features of this approach include the following: (1) multi-patch Coons representation of design geometry. The design geometry is represented as a collection of Coons patches where the four boundaries of each patch are represented as NURBS curves. The use of multiple patches is motivated by the need for representing topologically complex geometries. The Coons patches are used as a design representation so that designers do not need to specify interior control points and they provide a mechanism to compute analytical sensitivities for internal nodes in shape optimization, (2) exact boundary conversion to the analysis geometry with guaranteed mesh injectivity. The analysis geometry is a collection of NURBS patches that are converted from the multi-patch Coons representation with geometric exactness in patch boundaries. The internal NURBS control points are embedded in the parametric domain of the Coons patches with a built-in mesh rectifier to ensure the injectivity of the resulting B-spline geometry, i.e. every point in the physical domain is mapped to one point in the parametric domain, (3) analytical sensitivities. Sensitivities of objective functions and constraints with respect to design variables are derived through nodal sensitivities. The nodal sensitivities for the boundary control points are directly determined by the design parameters and those for internal nodes are obtained via the corresponding Coons patches.  相似文献   

6.
Non-uniform rational B-spline (NURBS) has been widely used as an effective shape parameterization technique for structural optimization due to its compact and powerful shape representation capability and its popularity among CAD systems. The advent of NURBS based isogeometric analysis has made it even more advantageous to use NURBS in shape optimization since it can potentially avoid the inaccuracy and labor-tediousness in geometric model conversion from the design model to the analysis model.Although both positions and weights of NURBS control points affect the shape, until very recently, usually only control point positions are used as design variables in shape optimization, thus restricting the design space and limiting the shape representation flexibility.This paper presents an approach for analytically computing the full sensitivities of both the positions and weights of NURBS control points in structural shape optimization. Such analytical formulation allows accurate calculation of sensitivity and has been successfully used in gradient-based shape optimization.The analytical sensitivity for both positions and weights of NURBS control points is especially beneficial for recovering optimal shapes that are conical e.g. ellipses and circles in 2D, cylinders, ellipsoids and spheres in 3D that are otherwise not possible without the weights as design variables.  相似文献   

7.
介绍具有等几何分析功能的GeoPDEs平台的数据结构和分析流程,针对二维平面形状优化问题,以控制顶点为设计变量,在推导出等几何分析的灵敏度计算公式后,提出基于GeoPDEs平台的灵敏度分析的高效实现方法,并采用移动渐近线法(Method of Moving Asymptotes,MMA)算法进行等几何形状优化.形状优化实例表明该方法收敛速度快,优化结果较理想.  相似文献   

8.
The isogeometric method is used to study the free vibration of thick plates based on Mindlin theory. The Non-uniform Rational B-Spline (NURBS) basis functions are employed to build the thick plate’s geometry models and serve as the shape functions for solution field approximation in finite element analysis. The Reissner–Mindlin plates built with multiple NURBS patches are investigated, in which several patches of the model have multi-interface and different patches may share a common point. In order to solve the non-conforming interface problems, Nitsche method is employed to glue different NURBS patches and only refers to the coupling conditions in this work. Various plate shapes, different boundary conditions and several kinds of thickness-span ratios are considered to verify the validity of the presented method. The dimensionless frequencies for different cases are obtained by solving the eigenvalue equation problems and compared with the existing reference solutions or the results calculated by ABAQUS software. Several numerical examples exhibit the effectiveness of the isogeometric approach. It shows that the natural frequencies of the Reissner–Mindlin plate can be successfully predicted by the combination of isogeometric analysis and Nitsche method.  相似文献   

9.

In this research, optimum shape of plate structures is sought to maximize the energy dissipation via structural shape optimization. To achieve this, isogeometric analysis (IGA) is utilized for structural analysis of plates considering elasto-plastic behavior of materials. The von Mises material model is employed for this purpose. Non-uniform rational B-splines basis functions are used for both geometry definition and approximating the unknown deformation field. The optimization problem is to maximize the structural dissipated energy until a prescribed displacement is reached and a fixed amount of material is considered in the design domain. A direct shape sensitivity analysis is performed and a mathematical based approach is employed for the optimization process. To demonstrate the efficiency of the proposed algorithm three examples are illustrated. Using the IGA prevents adjusting analysis model during the optimization process, which is time-consuming especially when iterative nonlinear analysis is performed. The results also show that large geometry modifications can be properly managed by the proposed algorithm.

  相似文献   

10.
In this paper, a unified strategy is developed to simultaneously insert inclusions or holes of regular shape as well as redistribute the material to effect optimal topologies of solids. We demonstrate the unified optimal design strategy through three possible choices of design variables: (1) purely geometrical, (2) purely material, and (3) geometrical-material. We couple the geometrical approach with the topological derivative of the objective function and a condition derived for optimally inserting an infinitesimal ellipsoidal heterogeneity (hole or inclusion) into the structure. The approximations of the geometry, material and behavioral fields are isoparametric (or “isogeometric”) and are composed consistent with the Hierarchical Partition of Unity Field Compositions (HPFC) theory (Rayasam et al., Int J Numer Methods Eng 72(12):1452–1489, 2007). Specifically, analogous to the constructive solid geometry procedure of CAD, the complex material as well as the behavioral field is modeled hierarchically through a series of pair-wise compositions of primitive fields defined on the primitive geometrical domains. The geometrical, material and behavioral approximations are made using Non-Uniform Rational B-Splines (NURBS) basis functions. Thus, the proposed approach seamlessly unifies the explicit representation of boundary shapes with the implicit representations of boundaries arising out of material redistribution, and is termed ISOCOMP, or isoparametric compositions for topology optimization. The methodology is demonstrated first on a set of example problems that increase in complexity of design variable choice culminating in simultaneous optimization of hole location, hole shape and material distribution within the domain. This is followed by a detailed case study involving topology optimization of a bicycle “dropout.”  相似文献   

11.
基于NURBS方法的气动外形优化设计   总被引:1,自引:0,他引:1  
采用NURBS曲线曲面,对钝锥弹头和钝双锥弹体建立参数化曲面模型,取NURBS曲线控制点作为设计参数,应用高超声速面元法求解气动力特性,在给定设计约束下,采用遗传算法进行气动外形优化设计,并对优化结果进行了比较分析。结果表明,采用NURBS方法构造参数化外形,并结合优化技术可方便快速地获得所需最优外形;与应用二次曲线构造参数化外形相比,该方法对弹体形状控制更加灵活,并可局部修改弹头曲线形状。因此,基于NURBS方法发展整套的系统优化设计算法很有现实意义和应用价值。  相似文献   

12.
This paper introduces a topology optimization method for 2D and 3D, steady-state and transient heat transfer problems that are dominated by natural convection in the fluid phase and diffusion in the solid phase. The geometry of the fluid-solid interface is described by an explicit level set method which allows for both shape and topological changes in the optimization process. The heat transfer in the fluid is modeled by an advection-diffusion equation. The fluid velocity is described by the incompressible Navier-Stokes equations augmented by a Boussinesq approximation of the buoyancy forces. The temperature field in the solid is predicted by a linear diffusion model. The governing equations in both the fluid and solid phases are discretized in space by a generalized formulation of the extended finite element method which preserves the crisp geometry definition of the level set method. The interface conditions at the fluid-solid boundary are enforced by Nitsche’s method. The proposed method is studied for problems optimizing the geometry of cooling devices. The numerical results demonstrate the applicability of the proposed method for a wide spectrum of problems. As the flow may exhibit dynamic instabilities, transient phenomena need to be considered when optimizing the geometry. However, the computational burden increases significantly when the time evolution of the flow fields needs to be resolved.  相似文献   

13.
This paper presents a structural topology optimization method based on a reaction–diffusion equation. In our approach, the design sensitivity for the topology optimization is directly employed as the reaction term of the reaction–diffusion equation. The distribution of material properties in the design domain is interpolated as the density field which is the solution of the reaction–diffusion equation, so free generation of new holes is allowed without the use of the topological gradient method. Our proposed method is intuitive and its implementation is simple compared with optimization methods using the level set method or phase field model. The evolution of the density field is based on the implicit finite element method. As numerical examples, compliance minimization problems of cantilever beams and force maximization problems of magnetic actuators are presented to demonstrate the method’s effectiveness and utility.  相似文献   

14.
15.
This paper presents an integrated approach that supports the topology optimization and CAD-based shape optimization. The main contribution of the paper is using the geometric reconstruction technique that is mathematically sound and error bounded for creating solid models of the topologically optimized structures with smooth geometric boundary. This geometric reconstruction method extends the integration to 3-D applications. In addition, commercial Computer-Aided Design (CAD), finite element analysis (FEA), optimization, and application software tools are incorporated to support the integrated optimization process. The integration is carried out by first converting the geometry of the topologically optimized structure into smooth and parametric B-spline curves and surfaces. The B-spline curves and surfaces are then imported into a parametric CAD environment to build solid models of the structure. The control point movements of the B-spline curves or surfaces are defined as design variables for shape optimization, in which CAD-based design velocity field computations, design sensitivity analysis (DSA), and nonlinear programming are performed. Both 2-D plane stress and 3-D solid examples are presented to demonstrate the proposed approach. Received January 27, 2000 Communicated by J. Sobieski  相似文献   

16.
17.
Using the level set method, a topological shape optimization method is developed for geometrically nonlinear structures in total Lagrangian formulation. The structural boundaries are implicitly represented by the level set function, obtainable from “Hamilton-Jacobi type” equation with “up-wind scheme,” embedded into a fixed initial domain. The method minimizes the compliance through the variations of implicit boundary, satisfying an allowable volume requirement. The required velocity field to solve the Hamilton-Jacobi equation is determined by the descent direction of Lagrangian derived from an optimality condition. Since the homogeneous material property and implicit boundary are utilized, the convergence difficulty is significantly relieved.  相似文献   

18.
In this paper, we present a novel isosurface visualization technique that guarantees the accurate visualization of isosurfaces with complex attribute data defined on (un)structured (curvi)linear hexahedral grids. Isosurfaces of high-order hexahedral-based finite element solutions on both uniform grids (including MRI and CT scans) and more complex geometry representing a domain of interest that can be rendered using our algorithm. Additionally, our technique can be used to directly visualize solutions and attributes in isogeometric analysis, an area based on trivariate high-order NURBS (Non-Uniform Rational B-splines) geometry and attribute representations for the analysis. Furthermore, our technique can be used to visualize isosurfaces of algebraic functions. Our approach combines subdivision and numerical root finding to form a robust and efficient isosurface visualization algorithm that does not miss surface features, while finding all intersections between a view frustum and desired isosurfaces. This allows the use of view-independent transparency in the rendering process. We demonstrate our technique through a straightforward CPU implementation on both complex-structured and complex-unstructured geometries with high-order simulation solutions, isosurfaces of medical data sets, and isosurfaces of algebraic functions.  相似文献   

19.
In the present work, a new spline based topology optimization using trimmed spline surfaces and the isogeometric analysis is proposed. In the proposed approach, the trimmed surface analysis which can treat topologically complex spline surfaces using trimming information provided by CAD systems is employed for structural response analysis and sensitivity calculation in the topology optimization. The outer and inner boundaries of design models are represented by a spline surface and trimming curves. Design variables used in this approach are the coordinates of control points of a spline surface and those of trimming curves. New sensitivity formulations for the control points in the trimmed surface analysis are proposed and their efficiency and accuracy are verified. The creation of new inner fronts during optimization is allowed for the topological flexibility. An inner front merging algorithm is also presented. The proposed spline based topology optimization is used to solve some benchmarking problems. Design space dependency which is one of serious shortcomings in conventional topology optimization approaches is naturally eliminated by the proposed spline based optimization. Design dependent load problems which are difficult to treat with conventional grid based topology optimization methods are easily dealt with by the proposed one. It is also shown that post-processing effort for converting to CAD model is eliminated by using the same spline information in numerical analysis and design optimization.  相似文献   

20.
In isogeometric shape optimization, the use of the search direction directly predicted from the discrete shape gradient makes the optimization history strongly dependent on the discretization. This discretization-dependency can affect the convergence and may lead the optimization process into a sub-optimal solution. The source of this discretization-dependency is traced to the lack of consistency with the local steepest descent search direction in the continuous formulation. In the present contribution, this inconsistency is analyzed using the shape variation equations and subsequently illustrated with a volume minimization problem. It is found that the inconsistency originates from the NURBS discretization which induces a discrete quadratic norm to represent the continuous Euclidean norm. To fix this inconsistency, three normalization approaches are proposed to obtain a discretization-independent normalized descent search direction. The discretization-independence of the proposed approaches is verified with a benchmark problem. The superiority of the proposed search direction and its suitability for numerical implementation is illustrated with examples of shape optimization for mechanical and thermal problems. Although the present work focuses on a NURBS-based discretization usually used in conjunction with isogeometric analysis, the proposed methodology may also be applied to alleviate the “mesh-dependency” in (traditional) Finite Element-based shape optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号