首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some memristors with metal/insulator/metal (MIM) structure have exhibited random telegraph noise (RTN) current signals, which makes them ideal to build true random number generators (TRNG) for advanced data encryption. However, there is still no clear guide on how essential manufacturing parameters like materials selection, thicknesses, deposition methods, and device lateral size can influence the quality of the RTN signal. In this paper, an exhaustive statistical analysis on the quality of the RTN signals produced by different MIM-like memristors is reported, and straightforward guidelines for the fabrication of memristors with enhanced RTN performance are presented, which are: i) Ni and Ti electrodes show better RTN than Au electrodes, ii) the 50 μm × 50 μm devices show better RTN than the 5 μm × 5 μm ones, iii) TiO2 shows better RTN than HfO2 and Al2O3, iv) sputtered-oxides show better RTN than ALD-oxides, and v) 10 nm thick oxides show better RTN than 5 nm thick oxides. The RTN signals recorded have been used as entropy sources in high-throughput TRNG circuits, which have passed the randomness tests of the National Institute of Standards and Technology. The work can serve as a useful guide for materials scientists and electronic engineers when fabricating MIM-like memristors for RTN applications.  相似文献   

2.
3.
From Deep Blue to AlphaGo, artificial intelligence and machine learning are booming, and neural networks have become the hot research direction. However, due to the size limit of complementary metal–oxide–semiconductor (CMOS) transistors, von Neumann-based computing systems are facing multiple challenges (such as memory walls). As the number of transistors required by the neural network increases, the development of neural networks based on the von Neumann computer is limited by volume and energy consumption. As the fourth basic circuit element, memristor shines in the field of neuromorphic computing. The new computer architecture based on memristor is widely considered as a substitute for the von Neumann architecture and has great potential to deal with the neural network and big data era challenge. This article reviews existing materials and structures of memristors, neurophysiological simulations based on memristors, and applications of memristor-based neural networks. The feasibility and advancement of implementing neural networks using memristors are discussed, the difficulties that need to be overcome at this stage are put forward, and their development prospects and challenges faced are also discussed.  相似文献   

4.
人工智能时代呈现指数增长的待处理数据量对计算机能效提出了更高的要求。因此,在后摩尔时代显然迫切需要开发新型的计算机技术来应对这种挑战。受人脑并行运算架构的启发,模拟突触器件基于“存算一体”架构被认为是突破传统冯·诺依曼瓶颈的有效技术。本文着重梳理了神经形态器件的忆阻机制,按照编程方式对近期突触器件的相关工作开展了分类解读,并结合器件特性介绍了它们在感知模拟等方面的潜在应用。最后,总结了当前神经形态器件所面临的关键技术挑战,并对其未来的发展前景进行了展望。  相似文献   

5.
张晖  董育宁 《电子与信息学报》2008,30(12):2959-2962
该文提出了一种新的简单的产生满足任意自相关特性的瑞利波形的仿真模型,在此基础上得出无线信道中瑞利衰落波形的产生方法。该方法可以容易地产生多个相互独立的瑞利衰落波形,从而为研究各种频率分集无线通信系统提供了可能。仿真结果表明该模型能够有效地产生符合小尺度无线信道特征的瑞利衰落波形,满足自相关特性及平稳性的要求。  相似文献   

6.
提出使用过氧化氢后处理多孔硅厚膜.在乙醇、氢氟酸、过氧化氢溶液中,多孔硅样片做阴极施加电流密度为10mA/cm2,希望通过后处理增强多孔硅表面的稳定性、光滑度和机械强度.研究了厚度为20μm和70μm的多孔硅厚膜经过过氧化氢处理后的微结构.扫描电镜图显示经过过氧化氢处理后的多孔硅厚膜表面的光滑度有极大的提高,X光衍射光谱揭示经过过氧化氢后处理后多孔硅表面形成了一层氧化膜.  相似文献   

7.
提出使用过氧化氢后处理多孔硅厚膜.在乙醇、氢氟酸、过氧化氢溶液中,多孔硅样片做阴极施加电流密度为10 m A/cm2 ,希望通过后处理增强多孔硅表面的稳定性、光滑度和机械强度.研究了厚度为2 0 μm和70 μm的多孔硅厚膜经过过氧化氢处理后的微结构.扫描电镜图显示经过过氧化氢处理后的多孔硅厚膜表面的光滑度有极大的提高,X光衍射光谱揭示经过过氧化氢后处理后多孔硅表面形成了一层氧化膜  相似文献   

8.
9.
The demand to discover every single cellular component has been continuously increasing along with the development of biological techniques. The bottom‐up approach to construct a cell‐mimicking system from well‐defined and tunable compositions is accelerating, with the ultimate goal of comprehending a biological cell. From among the available techniques, the artificial cell has been increasingly recognized as one of the most powerful tools for building a cell‐like system from scratch. This review summarizes the development of artificial cells, from a pure giant unilamellar vesicle (GUV) to a controllable, self‐fueled proteoliposome, both of which are highly compartmentalized. The basic components of an artificial cell, as well as the optimal conditions required for successful, reproducible GUV formation and protein reconstitution, are discussed. Most importantly, progress in studying the metabolic reactions in and the motility of a reconstituted artificial cell are the main focus of the review. The ability to perform a complicated reaction cascade in a controllable manner is highlighted as a promising perspective to obtaining an autonomous and movable GUV.  相似文献   

10.
Threshold switches with Ag or Cu active metal species are volatile memristors (also termed diffusive memristors) featuring spontaneous rupture of conduction channels. The temporal dynamics of the conductance evolution is closely related to the electrochemical and diffusive dynamics of the active metals which could be modulated by electric field strength, biasing duration, temperature, and so on. Microscopic pictures by electron microscopy and quantitative thermodynamics modeling are examined to give insights into the underlying physics of the switching. Depending on the time scale of the relaxation process, such devices find a variety of novel applications in electronics, ranging from selector devices for memories to synaptic devices for neuromorphic computing.  相似文献   

11.
Porous membranes with critically hydrophobic/hydrophilic phase‐separated‐like structures for use in vanadium flow battery application are first realized by solvent‐induced reassembly of a polymer blend system. Porous poly(ether sulfone) (PES)/sufonated poly(ether ether ketone) (SPEEK) blend membranes with tunable pore size are prepared via the phase inversion method. After solidification, isopropanol (IPA) is introduced to induce the reassembly of sulfonated groups and further form ion‐transport channels by using the interaction between IPA and functional groups in SPEEK. As a result, a highly phase separated membrane structure is created, composed of a highly stable hydrophobic porous PES matrix and hydrophilic interconnected small pores. The charged pore walls are highly beneficial to improving proton conductivity, while pores are simultaneously shrunk during the IPA treatment. Therefore, the resultant membranes show an excellent battery performance with a coulombic efficiency exceeding 99%, along with an energy efficiency over 91%, which is among the highest values ever reported. This article supplies an ease‐to‐operate and efficient method to create membranes with controlled ion‐transport channels.  相似文献   

12.
13.
3D focused ion beam tomography is used to analyze the microstructures of Li‐ion conducting Li6.75La2.75Ca0.25Zr1.5Nb0.5O12 (LLCZN) garnet porous electrolytes with different levels of porosity and the theoretical effective bulk conductivities of the electrolyte are calculated based on LLCZN volume fraction, constriction factor, geometric tortuosity, and percolation factor. The experimentally measured effective bulk conductivities are consistently lower than the theoretical values when assuming constant bulk conductivity, suggesting the bulk conductivity of the LLCZN decreased with increasing porosity. This work highlights the importance of understanding the full effects of altering the microstructure of solid‐state electrolytes, as this will play a key role in advancing Li‐ion battery technology to higher energy and power densities.  相似文献   

14.
Demand for energy in day to day life is increasing exponentially. However, existing energy storage technologies like lithium ion batteries cannot stand alone to fulfill future needs. In this regard, potassium ion batteries (KIBs) that utilize K ions in their charge storage mechanism have attracted considerable attention due to their unique properties and are therefore established as one of the future battery systems of interest among the scientific community. Nevertheless, the development and identification of appropriate electrode materials is very essential for practical applications. This review features the current development in KIBs electrode and electrolyte materials, the present challenges facing this technology (in the commercial aspect), and future aspects to develop fully functional KIBs. The potassium storage mechanisms, evolution of the KIBs, and the advantages and disadvantages of each category of materials are included. Additionally, various approaches to enhance the electrochemical performances of KIBs are also discussed. This review is not only an amalgamation of different viewpoints in literature, but also contains concise perspectives and strategies. Moreover, the potential emergence of a novel class of K‐based dual ion batteries is also analyzed for the first time.  相似文献   

15.
Resistive random-access memory(RRAM),also known as memristors,having a very simple device structure with two terminals,fulfill almost all of the fundamental requirements of volatile memory,nonvolatile memory,and neuromorphic characteristics.Its memory and neuromorphic behaviors are currently being explored in relation to a range of materials,such as biological materials,perovskites,2D materials,and transition metal oxides.In this review,we discuss the different electrical behaviors exhibited by RRAM devices based on these materials by briefly explaining their corresponding switching mechanisms.We then discuss emergent memory technologies using memristors,together with its potential neuromorphic applications,by elucidating the different material engineering techniques used during device fabrication to improve the memory and neuromorphic performance of devices,in areas such as ION/IOFF ratio,endurance,spike time-dependent plasticity(STDP),and paired-pulse facilitation(PPF),among others.The emulation of essential biological synaptic functions realized in various switching materials,including inorganic metal oxides and new organic materials,as well as diverse device structures such as single-layer and multilayer hetero-structured devices,and crossbar arrays,is analyzed in detail.Finally,we discuss current challenges and future prospects for the development of inorganic and new materials-based memristors.  相似文献   

16.
Aerogels are highly porous structures produced by replacing the liquid solvent of a gel with air without causing a collapse in the solid network. Unlike conventional fabrication methods, additive manufacturing (AM) has been applied to fabricate 3D aerogels with customized geometries specific to their applications, designed pore morphologies, multimaterial structures, etc. To date, three major AM technologies (extrusion, inkjet, and stereolithography) followed by a drying process have been proposed to additively manufacture 3D functional aerogels. 3D-printed aerogels and porous scaffolds showed great promise for a variety of applications, including tissue engineering, electrochemical energy storage, controlled drug delivery, sensing, and soft robotics. In this review, the details of steps included in the AM of aerogels and porous scaffolds are discussed, and a general frame is provided for AM of those. Then, the different postprinting processes are addressed to achieve the porosity (after drying); and mechanical strength, functionality, or both (after postdrying thermal or chemical treatments) are provided. Furthermore, the applications of the 3D-printed aerogels/porous scaffolds made from a variety of materials are also highlighted. The review is concluded with the current challenges and an outlook for the next generation of 3D-printed aerogels and porous scaffolds.  相似文献   

17.
The performance of alkaline fuel cells is severely limited by substandard anion exchange membranes (AEMs) due to the lower ionic conductivity compared to the proton exchange membranes. The ionic conductivity of AEMs can be effectively improved by regulating the microphase structure, but it still cannot meet the practical use requirements. Here, enhanced microphase-separated structures are constructed by the cooperativity of highly hydrophilic dual cations and highly hydrophobic fluorinated side chains. Meanwhile, the introduction of  O enhances the flexibility of side chains and facilitates the formation of ion transport channels. The dual piperidinium cation functionalized membrane (PB2Pip-5C8F) which is grafted with the ultra-hydrophobic fluorocarbon chain exhibits a high conductivity of 74.4 mS cm−1 at 30 °C and 168.46 mS cm−1 at 80 °C. Furthermore, the PB2Pip-5C8F membrane achieves the highest peak power density of 718 mW cm−2 at 80 °C under a current density of 1197 mA cm−2 without back pressure. A long-term life cell test of this AEM shows a low voltage decay rate of 1.68 mV h−1 over 70 h of operation at 80 °C.  相似文献   

18.
19.
本文介绍了一种采用硬/软件结合消除微机A/D、D/A通道数据误差的方法,所加硬件均为普通元器件,造价低,且软件开销也不大,这对提高微机系统的性能价格比,推广应用微机新产品均有益处。  相似文献   

20.
GaAs samples have been implanted with a dose of 2 × 1014 cm?2 of each ion in the following combinations: Ga, As, Ga + As, Se, Ga + Se and As + Se. Implantation was at 200°C, and post implantation annealing at 700°C. Subsequent examination by transmission electron microscopy (TEM) showed clear and reproducible differences in the dislocation loop size and density, depending on the ion species implanted. The simplest results were obtained with the single implants, particularly Ga and As. These observed variations could be explained in terms of point defect populations, and hence rates of annealing at a given anneal temperature, being affected significantly by the stoichiometric effect of the implant. These simpler aspects were also seen to be incorporated in the more complex “dual” implants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号