共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究错流旋转填料床的质、热同传性能,采用热空气-氨水体系,考察了进气温度T、超重力因子β、液体喷淋密度q和气速u对错流旋转填料床传热性能的影响,在相同实验条件下对比了丝网填料和乱堆填料的传热性能。研究结果表明:气相体积传质系数kyae、体积传热系数(Ua)s随进气温度、超重力因子、气速、液体喷淋密度的增大而增大;传热效率ε、传热面积A随超重力因子、气速、液体喷淋密度的增大而增大;传热系数K随超重力因子、气速、液体喷淋密度的增大几乎不变,从而揭示了错流旋转填料床强化气液直接传热的机理是通过提高传热面积进而提高体积传热系数,而不是显著提高传热系数。在相同条件下,以丝网为填料时kyae和(Ua)s分别是乱堆填料的1.09~1.63倍和1.24~3.53倍。 相似文献
2.
New typical cross-flow Rotating Packed Bed(RPB)called multi-pulverizing RPB was manufactured.There is enough void in multi-pulverizing RPB,where liquid easily flows and is repeatedly pulverized by light packing,which decreases the material consumed,lightens the weight,and compacts the structure.Mass and heat transfer property in the new type PRB were studied by two experimental models.In the mass transfer model,the axial fan pumping gas press is only 100 Pa,mass transfer coefficient and volumetric mass transfer coefficient are similar to countercurrent RPB,which are an order quantity lager than that in the conventional packed tower.In the heat transfer experiment,the axial fan pumping gas press is only 120 Pa;volumetric heatwhich especially suits the treatment of large gas flow and lower gas pressure drop. 相似文献
3.
To do further research on the mass‐transfer mechanism in rotating packed bed (RPB), dynamics of droplets in a RPB are studied by an analytical approach combined with a series of laboratory measurements. Based on the results of the fluid dynamics, mathematical models of mass‐transfer coefficient and mass‐transfer process in RPB are proposed, respectively. Mass‐transfer experiments in RPB are also carried out using ethanol–water solution. By comparison, the results of simulation agree well with that of the experiment, which demonstrate that both hydrodynamic model and mass‐transfer models can better describe the real conditions of RPB. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2705–2723, 2014 相似文献
4.
5.
6.
转子结构为相互嵌套填料环的新型旋转填料床是基于强化气膜控制传质过程的新型高效传质设备,可适用于受气膜控制的吸收、精馏和低浓度工业气体的净化等过程。分别以化学吸收体系CO2-NaOH和物理吸收体系NH3-H2O测定了不同气量、液气比和超重力因子条件下的有效比表面积a和气相体积传质系数kya,并由此得到气相传质系数ky,对其传质性能进行研究。实验结果表明:a、kya和ky均随着气量、液气比和超重力因子的增大而增大。通过对比可知,新型旋转填料床的气相体积传质系数在相近操作条件下是文献逆流旋转填料床的2倍。并对实验数据进行了回归,拟合出了a、kya和ky分别与气相雷诺数ReG、液相韦伯数WeL和伽利略数Ga之间的关联式。 相似文献
7.
采用Na2CO3-H2S为体系,利用规整丝网填料和新型塑料填料的错流旋转床为吸收设备,探究了两种填料床的传质性能,通过理论推导气液传质系数Ky和Kya的表达式,考察了液量、气液比、超重力因子对脱硫率、Ky和Kya的影响。实验结果表明:在相同条件下,规整丝网填料床的脱硫率略高于新型塑料填料床,约为3%~4%,但Ky、Kya和压降分别是新型塑料填料床的0.25~0.5、0.8~0.9和0.3~0.5倍。通过文献对比分析,在相近工况条件下,新型塑料填料床的Kya比散装丝网填料床提高了1.45倍。并对实验数据进行回归,拟合出Ky、Kya与气相雷诺数ReG、液相韦伯数WeL和伽利略数Ga之间的关联式。 相似文献
8.
利用水-空气系统对并流旋转床的气相压降进行了研究,并与逆流旋转床气相压降进行了对比。研究结果表明:并流较逆流旋转床的气相压降低;并流旋转床的气相压降随气体流量的增大而增大,随液体流量的增大而减小,随转速的增大明显降低;而逆流旋转床的气相压降随转速的增大明显升高。利用水吸收SO2的实验对并流旋转床的传质特性进行了研究。研究结果表明:并流旋转床填料层内各点的体积传质系数随着气体流量、液体流量和转速的增大而增大;填料层半径由70mm增大至90mm时,并流旋转床的体积传质系数迅速增大,而后并流旋转床的体积传质系数随半径的增大而减小。对并流和逆流旋转床填料层内体积传质系数进行了对比。结果表明:填料层半径由70mm增大至130mm时,并流旋转床的体积传质系数较逆流时大;当半径大于130mm后,逆流旋转床的体积传质系数大于并流旋转床的体积传质系数,且随半径增大而增大。根据研究结果,提出了降低系统压降的设想,即并流与逆流旋转床串联操作。 相似文献
9.
Fixed beds are widely used in the chemical and process industry due to their relatively simple yet effective performance. Determining the radial heat transfer at the wall in a fixed bed is crucial to predict the performance of columns. Heat transfer parameters often need to be obtained experimentally. Various Nusselt versus Reynolds correlations in literature show considerable scatter and discrepancies. The tube-to-particle diameter ratio and boundary conditions on the particle surface have been understood to affect heat transfer near the wall by virtue of influence on the near-wall porosity and mixing. In this work, a fixed bed consisting of mono-disperse particles is generated via gravity-forced sedimentation modelling utilizing the discrete element method for a ratio of 3.3. The system is meshed and imported in a computational fluid dynamics (CFD) solver. Fluid inlet velocity is varied to get corresponding to the laminar and turbulent flow regimes. The particles are treated as boundaries with Dirichlet, Neumann, and Robin boundary conditions applied for the closure of energy balance. Another set of simulations is run with particles modelled as solids with varying thermal conductivities (). The heat flux and volume-averaged fluid temperature calculated during post-processing are used to determine the wall heat transfer coefficient and, subsequently, the wall Nu number. Fifteen versus correlations are compiled and analyzed. A new semi-empirical correlation for the wall Nusselt number has been developed for a fixed bed packed with monodisperse spheres for and results compared with data published in literature. Additionally, the impact of buoyancy effect on the wall Nusselt number has been studied. 相似文献
10.
A mass transfer model for devolatilization process of highly viscous media in rotating packed bed(RPB) was developed based on penetration theory and mass conservation.Before establishing the model,some mass transfer experiments of thin film were conducted in a designed diffusion cell including vacuum and feeding system. In this study,acetone was used as the volatile organic compound(VOC) and syrup as the highly viscous media.The thickness of thin film was changed by using different liquid distributor.It was found that bubbling played an important role in the devolatilization.The correlation of diffusion coefficient of acetone in highly viscous dilute solution was proposed.The relative error between predicted and experimental data was within the range of ± 30% for diffusion coefficient of acetone in syrup.A comparison of experimental data of RPB with model indicated that the relative error was within ± 30% for efficiency of acetone removal. 相似文献
11.
The residence time distribution (RTD) for liquid phase in a trickle bed reactor (TBR) has been experimentally studied for air-water system. Experiments were performed in a 15.2 cm diameter column using commerical alumina extrudates with D/dp ratio equal to 75 to eliminate the radial flow differences. The range of liquid and gas flow rates covered was 3.76 < ReL < 9.3 and 0 < ReG < 2.92. The axial dispersion model was used to compute axial dispersion coefficient. The effect of liquid and gas flow rates on total liquid holdup and axial dispersion was investigated. The total liquid holdup has been correlated to liquid and gas flow rates. 相似文献
12.
13.
旋转填充床中伴有可逆反应的气液传质 总被引:1,自引:1,他引:1
应用CO2-MDEA气液吸收体系,对旋转填充床中伴有可逆反应的气液传质过程进行了定量的模型研究。在所有反应都可逆的情况下,根据Higbie渗透理论建立了旋转床中CO2-MDEA体系的扩散-反应传质模型。通过模型对传质过程的定量描述以及实验结果对模型的验证,超重力旋转床的强化作用可进一步被揭示为:由于不断更新的液膜使得可溶性气体在液膜内形成较大的浓度梯度,从而极大地增大了传质系数,强化了传质;旋转床的强化作用是在动态的传质过程中完成的,液膜的寿命越短则传质系数越大。在不同转速、温度、MDEA浓度和气液流量条件下进行了实验,本文模型的模拟值和实验结果吻合较好。 相似文献
14.
密封式错流旋转填料床气膜控制传质过程研究 总被引:1,自引:0,他引:1
在密封式错流旋转填料床中,利用浓度为0.926 mol/L的NaOH溶液吸收空气中体积分数为0.5%—1%的CO2气体,对气膜控制过程传质性能进行了研究。实验表明:密封式错流旋转填料床CO2的吸收率随气体流量的增大而减小,在低转速下随旋转填料床的转速增大气体吸收率上升较快,高转速时影响变小;转速大于1 000 r/min情况下,CO2的吸收率随液量的增大而上升,转速小于1 000 r/min情况下,CO2的吸收率随液量增大而变小。建立了密封式错流旋转填料床气膜控制过程的气体吸收模型,经验证实验结果与模型计算结果吻合较好。 相似文献
15.
基于旋转填充床流体流动的可视化结果,建立了超重力旋转填充床气液传质过程的数学模型,模拟氮气解吸水中溶解氧的传质过程。模拟结果表明,缩短液相停留时间、提高液相扩散系数都能增大液相传质分系数kL;总体积传质系数KLa随超重力因子的增加而增大、随温度的上升而增大、随气相流率的增加略有下降、随液相流率的增加明显增大;空腔区传质贡献率随空腔区的增大而增大,随超重力因子的增大而减小;且短暂的停留时间是超重力旋转填充床对传质过程强化的本质原因。模型较好地符合文献的实验数据,误差在±16%以内。 相似文献
16.
CFD方法在固定床反应器传热研究中的应用 总被引:5,自引:4,他引:5
固定床反应器是一种常见的化学和生化反应器,由于内部结构十分复杂,固定床内的局部流动和传热过程研究一直是一个颇具挑战性的问题。有效参数法是长期以来固定床传热研究的常用方法,但是由于对固定床内温度场缺乏准确的了解,目前为止许多基于有效参数法的传热模型的普适性仍然存在问题。计算流体力学(CFD)的数值模拟方法是近年来应用于固定床流动和传热研究的一种新的研究方法,它通过数值方法求解流动和传递的微分方程组而获得流场和温度场。CFD数值模拟方法能够提供精确的局部流动和传递信息如速度分布、压力分布、温度分布、组分浓度分布等。本文综述和分析了CFD方法在固定床反应器的流动和传热研究领域的最新进展,讨论了CFD方法在该领域的应用前景。 相似文献
17.
Heat transfer between a bed of nickel pellets and a vertical section of electrically heated steel pipe has been measured, with the pellet bed inside the vertical pipe. Most of the data are for a 20.27 cm diameter pipe but some data were also obtained for a 10.23 cm diameter pipe. The effective thermal conductivity of the stationary pellet bed has been estimated approximately from the results of unsteady heating tests. Tests have been carried out with a downwardly moving bed, including the effect of air flowing upwards through the bed. Average values of the pellet‐side heat transfer coefficient are between 72 and 135 W/(m2°C) depending on the mass fluxes of air and pellets, and have been expressed as an empirical correlation. 相似文献
18.
颗粒堆积床作为反应器和分离器等的重要组成广泛应用于实际化学工业生产中。基于传统的有序堆积结构,提出了一种新型格栅支撑有序堆积结构,通过采用新型格栅支撑结构可以快速构建有序颗粒堆积床,其中包括格栅支撑简单立方、格栅支撑体心立方、格栅支撑疏松面心立方和格栅支撑密实面心立方颗粒堆积结构。对4种颗粒堆积单元通道内的流动换热进行模拟研究后发现,不同堆积形式的格栅支撑颗粒堆积床流动换热性能不同;在相同的面心立方堆积形式下,使用不同的格栅支撑结构,其流动传热也有明显差异;与传统有序堆积结构相比,在换热相差不多的情况下,格栅支撑有序堆积结构的压降减小,所以其综合换热效率有明显提升。 相似文献
19.
Packed beds of particles are widely used in chemical industrial production as core units of fixed bed reactors, dryers, filters and other equipment. Based on traditional structured packed beds, this paper proposes some novel grille-support structured packed beds. The novel grille-support packed beds can be quickly constructed by using the new grille, including grille-support simple cubic (G-SC), grille-support body center cubic (G-BCC), grille-support loose face center cubic (G-LFCC) and grille-support compact face center cubic (G-CFCC) packing. In this paper, the flow and heat transfer characteristics of grille-support structured packed beds are numerically studied. Results show that, the packed beds with different packing forms have diverse flow and heat transfer performance. Under the same face center cubic packing form, the flow and heat transfer could be also significantly different with disparate grilles. It is also revealed that, compared with the traditional structured packed bed, the pressure drop of the grille-support structured packed bed is reduced while the heat transfer coefficient is similar, so the overall heat transfer efficiency is notably improved. 相似文献
20.
K. Remananda Rao 《加拿大化工杂志》1993,71(5):685-688
A unique characteristic linear dimension (d), defined as the cube root of the specific liquid holdup (hsp) in the packed column, was used to correlate successfully the liquid film mass transfer coefficient kLa for gas absorption-desorption for sparingly soluble gases in liquids below loading. To produce this simple, dimensionless correlation, kLa data reported in literature were used, covering a wide range of physical properties of liquids, packings and operating conditions. This new approach showed operating holdup as an important factor in gas liquid mass transfer. 相似文献