首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Petrochemical-based adhesives such as urea-formaldehyde and phenol-formaldehyde resins are predominant wood adhesives. In this study, a new wood adhesive from lignin was developed and characterized. The new adhesive consisted of demethylated kraft lignin (DKL), a byproduct in the production of dimethyl sulfoxide from kraft lignin, and a polyethylenimine (PEI). Lap-shear specimens bonded with this new DKL-PEI adhesive system had very high shear strength and were very water-resistant. The effects of the preparation time, the curing conditions, the total solids content of the adhesive, the DKL/PEI weight ratio and the molecular weight of PEI on the shear strength and water-resistance of the resulting lap-shear specimens were studied in detail. Investigation on the curing chemistry of this new adhesive revealed that phenolic hydroxyl groups were oxidized to form quinones that further reacted with PEI. It was proposed that the curing mechanisms of this DKL-PEI adhesive were similar to the quinone-tanning processes in nature.  相似文献   

2.
A formaldehyde-free wood adhesive system consisting of kraft lignin and a polyaminoamide-epichlorohydrin (PAE) resin (a paper wet strength agent) has been investigated in detail. The lignin-PAE adhesives were prepared by mixing an alkaline kraft lignin solution and a PAE solution. Mixing times longer than 20 min had little impact on the shear strength of the wood composites bonded with the lignin-PAE adhesives. The shear strength of the wood composites bonded with the lignin-PAE adhesives increased and then flattened out when the press time and the press temperature increased. The shear strength and water resistance of the wood composites bonded with the lignin-PAE adhesives depended strongly on the lignin/PAE weight ratio. Of the weight ratios studied, the 3:1 lignin/PAE weight ratio resulted in the highest shear strength and the highest water resistance of the resulting wood composites. The wood composites bonded with the lignin-PAE adhesives did not delaminate and retained very high strengths even after they underwent a boiling-water test. The lignin-PAE adhesives could be stored at room temperature for two days without losing their adhesion ability. PAE was the crosslinking agent in this lignin-PAE adhesive. Possible reactions between lignin and PAE are discussed in detail.  相似文献   

3.
The present work aims to evaluate the influence of addition of kraft lignin in moisture curing polyurethane (PU) based wood adhesives. The mechanical, thermal properties and chemical structure of the adhesive were studied. The lignin-PU adhesives were obtained by replacing 1%, 3% and 5% of polypropylene glycol (PPG) by Kraft lignin and further reacted with monomeric diphenylmethanediisocyanate (MDI). The aliphatic hydroxyl level of lignin was not taken into consideration in the stoichiometry, in order to find out effect on % free NCO of the final product. The chemical structure of the synthesized lignin-PU adhesives were analyzed by Fourier transform infrared spectroscopy (FTIR). The lap shear strength of the adhesives was tested by bonding canarium wood substrates. The results illustrated that by increasing the weight % of lignin in such lignin-PU adhesives, a decrease in the free isocyanate content, leading to slower setting time but higher shear strength values, were observed. Similarly, the thermal properties of lignin-PU adhesive were also studied, showing an increase in glass transition temperature (Tg) with increase in lignin content.  相似文献   

4.
In this study, a green adhesive from renewable lignin and tannin was developed with polyethylenimine (PEI) with a method to improve the water resistance of the lignin/tannin adhesive. Lignin polyols were prepared through the liquefaction of oil‐palm empty fruit bunches. The characteristics of the adhesive samples were compared with those of a commercial phenol–formaldehyde resin. Three plywood specimens bonded with the new adhesive showed a very high tensile strength (63.04 MPa) and were very water resistant. The effect of the solid content of the adhesives on the tensile strength and gel time and various weight ratios of PEI on the tensile strength and water resistance of the plywood specimens were evaluated. Thermal stability tests revealed that the lignin polyol–tannin/PEI adhesives had a high heat resistance (360 °C). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43437.  相似文献   

5.
Poly(N‐acryloyl dopamine) (PAD) was successfully synthesized through free‐radical homopolymerization of N‐acryloyl‐O,O′‐diphenylmethyldopamine and subsequent deprotection. The adhesive ability of PAD to wood was studied in detail. PAD underwent substantial oxidation and crosslinking reactions at about 80°C. Therefore, maple veneer samples bonded with PAD powder at a press temperature of 120°C had high shear strength and high water resistance. In contrast to conventional wood adhesives such as phenol‐formaldehyde and urea‐formaldehyde resins, PAD resulted in an increase, rather than a decrease, in the shear strengths of two‐ply laminated maple veneer test specimens that had undergone a water soaking and drying treatment. A mixture of PAD and polyethylenimine (PEI) resulted in much higher shear strength than PAD alone. To achieve high shear strength and high water resistance, the maple specimens bonded with PAD–PEI mixtures had to be cured above 150°C because reactions between PAD and PEI occurred at about 150°C. The water resistance of the maple specimens bonded with the PAD–PEI mixtures was dependent on the PAD:PEI weight ratio and the curing temperature. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1078–1084, 2003  相似文献   

6.
Conventional adhesives often emit volatile organic compounds (VOCs), which have a negative impact on human health. In this paper, an environmentally-friendly supramolecular adhesive PD which has high adhesive and low VOCs emission is prepared by the reaction between polyethyleneimine (PEI) and 3,4-dihydroxybenzaldehyde (DBA). PD containing abundant catechol groups exhibit excellent adhesion to wood substrates and is able to reach a maximum shear strength of 5.20 ± 0.39 MPa. One factor is attributed to multiple reactions between PEI, and DBA and oxidation of DBA. These reactions construct a complex three-dimensional cross-linked structure which is very helpful to improve the bonding performance of the adhesive. Another reason refers to the fact that a large number of catechol groups in PD can form a lot of hydrogen bonds with the amino group in PEI and the hydroxyl group in the wood substrate. These hydrogen bonds play an important role in enhancing shear strength. PD adhesives have a stronger bond strength than commercial chloroprene rubber (CR, Pattex-PXL) and polyvinyl acetate adhesives (PVAc, JUJU-8708) and have lower emissions of VOCs. As an environmentally-friendly adhesive for wood-based substrates, this adhesive may have potential applications in the wood processing industry.  相似文献   

7.
High-temperature adhesives which can be adhered at adhesive temperatures lower than those of conventional polyimide adhesives were investigated. Polyetherimide (PEI), developed by General Electric Co., is one such promising low curing temperature adhesive because it melts at temperatures lower than those used for conventional polyimides. Lap shear adhesive strength was investigated in a 75 μm-thick PEI film using steel test pieces. 350 kgf/cm2 was achieved after curing for 1 hour at 270°C and 150 kgf/cm2 was achieved at the test temperature of 200°C. PEI adhesive dissolved by N, N-dimethylformamide exhibited a high adhesive strength of 240 kgf/cm2 after curing for 2 hours at 200°C. In addition, it was found that PEI could be used at much lower adhesive pressures than those of conventional polyimide adhesives.  相似文献   

8.
In the present study, the possibility of development of a wood adhesive using coffee bean shell lignin (Cbsl) has been explored. Cbsl-modified phenolic adhesive has been prepared by replacing phenol with lignin at different weight percents. The optimization of weight percent lignin incorporation was carried out with respect to mechanical properties. It was found that up to 50 wt% of phenol could be replaced by Cbsl to give lignin–phenol–formaldehyde adhesive (LPF) with improved bond strength in comparison to control phenol–formaldehyde (CPF). Optimized LPF and CPF adhesives were characterized by IR, DSC and TGA. The IR spectrum of LPF showed structural similarity to CPF. Thermal stability of LPF adhesive was found to be lower as compared to that of CPF. DSC studies revealed a higher rate of curing in the LPF adhesive.  相似文献   

9.
The performance of phenol-formaldehyde (PF) resins, formulated with lignin derivatives previously synthesized as phenolic resin prepolymers, was evaluated by thermal analysis of the curing process, and by a hard maple shear block test. At 54 and 60% phenol replacement levels, respectively, kraft (KL) and steam explosion lignin (SEL)-based resoles exhibited cure behavior very similar to a standard PF resin. Acid hydrolysis lignin gelled prematurely, and was found to be incompatible with the normal synthesis procedure. Differential scanning calorimetry (DSC) was used to compare kinetic parameters for the curing process of neat and lignin derived phenolic resins. Activation energies and cure rates determined by DSC showed no difference between adhesives. High lignin contents had no inhibitory effect on resin cure. Shear strength properties were evaluated in a compression test, and results illustrate that both lignin-based resins have acceptable strength properties, both in a dry and accelerated aging test. Of the lignins tested, kraft lignin consistently demonstrated superior performance as a pre-polymer in phenolic adhesives. This was attributed to differences in the chemical structure of the two lignins, which had been found to vary in terms of their reactivity with formaldehyde and phenol. KL had been noted to be more amenable to derivatization with formaldehyde and phenol, hence its ability to crosslink with a phenol-formaldehyde fraction during resin synthesis was increased. Positive structural features in KL are a high phenolic guaiacyl (3-methoxy, 4-hydroxy phenyl) content, low carbon-to-carbon bonding between aromatic rings, high solubility in alkali, and a higher number average molecular weight than SEL.  相似文献   

10.
Nine structural adhesives with varying pH were selected to examine the effect of adhesive pH on wood–adhesive bond quality. The adhesives evaluated included four highly alkaline phenol–formaldehyde, one intermediate pH phenol–resorcinol–formaldehyde, two acidic melamine–urea–formaldehyde, and two acidic melamine–formaldehyde resins. Block shear specimens were prepared using Douglas‐fir and black spruce wood. The adhesive performance was evaluated by measuring the shear properties (strength and wood failure) of the specimens tested at the dry and vacuum–pressure–redry (VPD) conditions. Adhesive pH, test condition, and wood species showed significant effects on shear properties. The different adhesives performed differently at the dry and VPD conditions. The high‐pH adhesives (phenol–formaldehyde and phenol–resorcinol–formaldehyde) showed similar high wood failures at both test conditions and performed better than the low‐pH adhesives (melamine–formaldehyde and melamine–urea–formaldehyde), especially after the VPD conditioning. The low‐pH adhesives showed high wood failure at the dry condition, but wood failure decreased significantly after VPD conditioning for both species, indicating that the low‐pH adhesives were less durable than the high‐pH adhesives. High‐pH adhesives did not have a negative impact on the strength of the bonded specimens. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Cold-set epoxy-based wood adhesives were investigated for production of exterior plywood. Effective adhesives were composed of bisphenol A diglycidyl ether (BPADGE), polyamidoamine (PAA), and polyethylenimine (PEI). Three-ply plywood panels were prepared with BPADGE–PAA–PEI adhesives and evaluated for their strengths and water resistance in accordance with a standard for exterior plywood. The effect of BPADGE/(PAA + PEI) weight ratio, PAA/PEI weight ratio, the mixing time for preparing the adhesive, and the pressing time for making plywood panels on the water resistance and the shear strengths of the plywood panels was investigated. The pot life of the adhesive was also measured. Plywood panels made with the BPADGE–PAA–PEI adhesives met the industrial requirements for exterior applications. Adhesion mechanisms are discussed in detail. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47741.  相似文献   

12.
A novel bio-based poly (ether ester) polyol containing both primary and secondary functional groups was synthesized from canola oil using a low cost and efficient procedure. In this work, use of the new canola oil derived polyol for the production of polyurethane (PU) adhesives was demonstrated. The canola oil based PU adhesives had similar or better adhesive properties in terms of lap shear strength than three commercial PU adhesives. The effect of NCO/OH ratio and temperature on adhesive characteristics on wood bonding was also evaluated by lap shear tests. It was found that the use of an elevated curing temperature (i.e. 100 °C), as well as optimized NCO/OH molar ratio (higher than 1.5/1.0), improved the wood adhesive properties. The overall chemical resistance of bio-based PU adhesives to cold water, acid and alkali was comparable to that of commercial PU adhesives whilst its resistance to hot water was superior.  相似文献   

13.
Development and characterization of a wood adhesive using bagasse lignin   总被引:8,自引:0,他引:8  
Bagasse is spent fiber left after extraction of sugar. It is mainly used as a fuel to concentrate sugarcane juice. In the present work, the possibility of preparing wood adhesives from bagasse has been explored. The parameters for the preparation of a lignin phenol formaldehyde (LPF) adhesive, (lignin concentration, formaldehyde to phenol molar ratio, catalyst concentration, reaction time and reaction temperature) have been optimized. It was found that up to 50% of phenol can be substituted by bagasse lignin to give LPF wood adhesive having better bonding strength in comparison to a control phenol formaldehyde (CPF) wood adhesive. Prepared resins were characterized using IR, DSC and TGA. IR spectra of LPF resin showed structural similarity with CPF resin. Thermal stability of LPF resin was found to be lower as compared to CPF resin. DSC studies reveal a lower curing temperature for LPF adhesive in comparison to CPF adhesive. A shelf-life study reveals that LPF exhibits consistent behavior as compared to CPF in respect to adhesive strength.  相似文献   

14.
This study reports the preparation of polyurethane adhesives using polyols obtained from cellulosic waste and detailed study on its adhesive strength in wood joints. Keeping in view the environmental hazards related to the huge paper-waste generation across the world, low-viscosity polyols have been prepared using magazine paper waste and vegetable oils with different physicochemical properties and were used to prepare two-component polyurethane adhesives for wood bonding. Polyurethane was analyzed by FTIR spectroscopy and TGA was used for the analysis of thermal properties. The adhesive strength was measured and compared with commercially available adhesives under different environmental conditions. The synthesized adhesive with NCO/OH ratio of 1.2 and curing time of 5 days was found to be superior to the commercial adhesives Fevicol™ and Araldite™ when compared simultaneously for the single-lap shear strength in different environmental conditions.  相似文献   

15.
Fibre-reinforced polymer (FRP)-strengthened glulam would be a more economically viable product if a single adhesive type could be utilised at all the bonded interfaces. This paper describes a test programme that examines the hygrothermal compliance of five commercial wood-laminating adhesives when bonding commercially viable FRP materials to wood. It was seen that the integrity of the bond depended not only on adhesive type but also on the FRP type under consideration. For one of the FRP types, moisture-cycled FRP–wood bonded specimens obtained high wood failure percentages and good shear strength results that compared well with non-moisture-cycled FRP–wood specimens, non-moisture-cycled wood–wood bonded specimens and solid control specimens taken from the same board. This encouraging result suggests an alternative to the expensive structural epoxy adhesives, which are generally accepted as the appropriate adhesive in FRP-strengthened glulam.  相似文献   

16.
Soybean proteins have great potential as bio-based adhesives. The objectives of our study were to develop and characterize formaldehyde-free soybean wood adhesives with improved water resistance. Second-order response surface regression models were used to determine the effects of soy protein isolate concentration, sodium chloride, and pH on adhesive performance. All three variables affected both dry and wet strengths of bonded wood specimens. The optimum operation zone for preparing adhesives with improved water resistance is at a protein concentration of 28% and pH 5.5. Sodium chloride had negative effects on adhesive performance. Soy adhesives modified with 0.5% sodium chloride had dry strength, wet strength, and boiling strength of bonded specimens comparable to nonmodified soy adhesives. Rheological study indicated that soy adhesives exhibited shear thinning behavior. Adhesives modified with sodium chloride showed significantly lower viscosity and yield stress. Sodium chloride-modified soy adhesives formed small aggregates and had low storage moduli, suggesting reduced protein–protein interactions. These formaldehyde-free soy adhesives showed strong potential as alternatives to commercial formaldehyde-based wood adhesives.  相似文献   

17.
新型聚醚酰亚胺改性环氧树脂结构粘合剂   总被引:5,自引:1,他引:4  
用新型聚醚酰亚胺 (PEI)改性四官能环氧树脂可以获得高强度、能长期耐温 2 0 0℃以上的结构粘合剂。基础研究表明 ,剪切强度除与加入的PEI量有关外 ,还与PEI分子质量、固化剂DDS用量等因素有关 ,其原因是不同的相结构所致  相似文献   

18.
This study was conducted to investigate the adhesive properties of chicken feather (CF)-based adhesives for wood-based panels. CF was hydrolysed in sodium hydroxide solutions of 5%, 7.5% and 10% (CF-AK). Chicken blood (CB) hydrolysed in sulfuric acid solution of 5% (CB-AC) was used as a hardener. The adhesives were formulated by crosslinking 60% CF-AK, 10% CB-AC and 30% formaldehyde-based crosslinking agents (formalin, melamine-urea-formaldehyde and phenol-formaldehyde prepolymers) on a solid weight basis. The CF-based adhesives were very viscous at room temperature, but the viscosity at 50 °C ranged from 300 to 600 mPa·s resulting in a sprayable adhesive. From the DSC analysis, the use of CF-AK-10% in the CF-based adhesives need longer curing time compared with that of CF-AK-5%. Most mechanical strength properties and dimensional stability of MDF bonded with CF-based adhesives were similar to those of commercial urea-formaldehyde (UF) resin. However, internal bonding strength of most MDF bonded with CF-based adhesives was higher than that with the UF resin. Most adhesive properties of the MDF manufactured with the new CF adhesive met the Korean Standard requirements for interior MDF. These results suggest that CF and/or CB can be used as raw materials for environment-friendly adhesives for producing wood panels.  相似文献   

19.
Kraft lignin (KL), a phenolic polymer formed during the kraft pulping process, is presently burned as a low value fuel. For decades, researchers have attempted to use KL as an inexpensive substitute for phenol in phenol-formaldehyde (PF) resins, but no one has produced a commercially satisfactory KL-PF resin. This paper reviews the literature on the present status of KL-PF adhesives and makes recommendations on needed research.

Kraft lignin solutions are complex mixtures which have broad molecular weight distributions, high viscosities, relatively low reactivities, and low solubilities. Attempts to overcome these inherent problems include methylolation of lignin to improve reactivity, the use of co-solvents to improve solubility, and ultrafiltration to yield more homogeneous molecular weight fractions. Future research efforts need to focus on understanding the fundamental chemical and physical properties of kraft lignin and its resins. The search for an economic lignin-based wood adhesive should continue.  相似文献   

20.
Aiming at the development of sustainable materials, in this study, a biobased wood polyurethane adhesive (PUA), derived from castor oil (CO), was synthetized and its properties were compared with a conventional wood adhesive. Different NCO/OH ratios have been used to assess its effect on the properties of the ensuing adhesives. FTIR, and DMA were used to monitor the extent of reaction and the glass transition temperature of the adhesive, respectively. In turn, the wood bonding properties of the PUA over time were assessed by lap shear using pine wood specimens. Is was observed that the lap shear strength increases with the increase of the RNCO/OH up to RNCO/OH = 2.50. Above this ratio, the adhesive performance decreases slightly, due to the rigidity of the PUA. Comparison with a conventional wood adhesive showed that CO derived adhesives presented similar strength properties but required less time to develop the ultimate bonding strength. The chemical and thermal stability of the most promising CO adhesive was also assessed. Despite of being sensitive to the chemical environment, the castor oil derived adhesives presented higher thermal stability than conventional wood adhesives.Finally, the cure process of CO derived adhesives was studied by differential scanning calorimetry and the Kissinger and Ozawa methods were used to determine the activation energy (Ea). The former afforded a value for Ea = 80.55 and the latter Ea = 87.07 kJ mol−1. Moreover, it was observed that the activation energy is dependent on the degree of cure, increasing slightly up to 0.6 and decreasing significantly afterwards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号