首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: Polymer electrolytes have attracted considerable attention as regards portable solid‐state electrochemical device applications. The present investigation is focused on the characterization of a new Na+ ion conducting polymer electrolyte (PEO)6:NaPO3 dispersed with 3–10 wt% BaTiO3 (0.7 µm) fillers. The composite polymer electrolytes (CPEs) were prepared by a solution‐casting method and characterized using various physical measurement techniques. RESULTS: Differential scanning calorimetry results indicate a maximum reduction in the degree of crystallinity of the polymer from 62.6% for uncomplexed poly(ethylene oxide) (PEO) to 27.6% for the CPE with 6 wt% BaTiO3. This substantiates an enhancement in the amorphous phase of the polymer inferred from X‐ray diffraction and optical micrographs. The CPE dispersed with 6 wt% BaTiO3 is found to be the best composition exhibiting a maximum ionic conductivity of 1.2 × 10?6 S cm?1 at 345 K with cationic transport number (t) of 0.33. CONCLUSIONS: An enhancement in the ionic conductivity of about two orders of magnitude is achieved for the composite electrolytes when compared to filler‐free solid polymer electrolyte. Correlation of the temperature‐dependent conductivity, activation energy for ion migration and transport number enables an understanding of the role played by the fillers in conduction characteristics of the CPEs. Copyright © 2007 Society of Chemical Industry  相似文献   

2.
A blend of poly(methyl methacrylate) (PMMA) and poly(styrene‐co‐acrylonitrile) (PSAN) has been evaluated as a composite polymer electrolyte by means of differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, ac impedance measurements, and linear sweep voltammetry (LSV). The blends show an interaction with the Li+ ions when complexed with lithium perchlorate (LiClO4), which results in an increase in the glass‐transition temperature (Tg) of the blends. The purpose of using PSAN as another component of the blend is to improve the poor mechanical properties of PMMA‐based plasticized electrolytes. The mechanical property is further improved by introducing fumed silica as inert filler, and hence the liquid electrolyte uptake and ionic conductivity of the composite systems are increased. Room‐temperature conductivity of the order of 10?4 S/cm has been achieved for one of the composite electrolytes made from a 1/1 blend of PSAN and PMMA containing 120% liquid electrolyte [1M LiClO4/propylene carbonate (PC)] and 10% fumed silica. These systems also showed good compatibility with Li electrodes and sufficient electrochemical stability for safe operation in Li batteries. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1319–1328, 2001  相似文献   

3.
Nanocomposite polymer blend electrolytes based on poly (ethylene oxide), poly (vinyl pyrrolidone) that contained lithium perchlorate as a dopant, propylene carbonate (PC) as a plasticizer and Barium Titanate (BaTiO3) as a filler were prepared for various concentrations of BaTiO3 using solvent casting technique. The structural and complex formations of the composite electrolyte membranes were confirmed by X‐ray diffraction and FTIR analysis. The addition of BaTiO3 nanofillers improved the ionic conductivity of the polymer electrolytes to some extent when the content of the BaTiO3 is 10 wt%. The addition of BaTiO3 also enhanced the thermal stability of the electrolyte. The surface morphology of the sample having a maximum ionic conductivity was studied by AFM. Molecular motion in the polymeric media was supported by fluorescence studies. The charge transfer arises between the polymer blend and Li‐ions were confirmed by UV‐Vis analysis. POLYM. COMPOS., 36:302–311, 2015. © 2014 Society of Plastics Engineers  相似文献   

4.
A new hybrid polymer electrolyte system based on chemical‐covalent polyether and siloxane phases is designed and prepared via the sol–gel approach and epoxide crosslinking. FT‐IR, 13C solid‐state NMR, and thermal analysis (differential scanning calorimetry (DSC) and TGA) are used to characterize the structure of these hybrids. These hybrid films are immersed into the liquid electrolyte (1M LiClO4/propylene carbonate) to form plasticized polymer electrolytes. The effects of hybrid composition, liquid electrolyte content, and temperature on the ionic conductivity of hybrid electrolytes are investigated and discussed. DSC traces demonstrate the presence of two second‐order transitions for all the samples and show a significant change in the thermal events with the amount of absorbed LiClO4/PC content. TGA results indicate these hybrid networks with excellent thermal stability. The EDS‐0.5 sample with a 75 wt % liquid electrolyte exhibits the ionic conductivity of 5.3 × 10?3 S cm?1 at 95°C and 1.4 × 10?3 S cm?1 at 15°C, in which the film shows homogenous and good mechanical strength as well as good chemical stability. In the plot of ionic conductivity and composition for these hybrids containing 45 wt % liquid electrolyte, the conductivity shows a maximum value corresponding to the sample with the weight ratio of GPTMS/PEGDE of 0.1. These obtained results are correlated and used to interpret the ion conduction behavior within the hybrid networks. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1000–1007, 2006  相似文献   

5.
Flexible, transparent, and crosslinked polymer films were synthesized by polymerization of PEG‐modified urethane acrylate using a simple method. A series of novel solid polymer electrolytes and gel electrolytes were prepared based on this type of polymer film. To understand the interactions among salt, solvent, and polymer, the swelling behaviors of the crosslinked polymer in pure propylene carbonate (PC) and liquid electrolyte solutions (LiClO4/PC) were investigated. The results showed that the swelling rate in the electrolyte solution containing moderate LiClO4 was greater than that in pure PC. Thermogravimetric analysis (TGA) also supported the interaction between the solvent and polymer. The morphology and crystallinity of the crosslinked polymer and polymer electrolytes were studied using atomic force microscopy (AFM) and wide‐angle X‐ray diffraction (WAXD) spectroscopy. The effects of the content of the electrolyte solution on the ionic conductivity of gel electrolytes were explored. The dependence of the conductivity on the amount of the electrolyte solution was nonlinear. With a different content of the plasticizer, the ionic conduction pathway of the polymer electrolytes would be changed. The best ionic conductivity of the gel electrolytes, which should have good mechanical properties, was 4 × 10r?3 S cm?1 at 25°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 340–348, 2003  相似文献   

6.
The ionic conductivity of PAN‐TiO2‐LiClO4 as a function of TiO2 concentration and temperature has been reported. The electrolyte samples were prepared by solution casting technique. Their conductivity was measured using the impedance spectroscopy technique. The highest room temperature conductivity of 1.8 × 10?4 S cm?1 was obtained at 7.5 wt % of TiO2 filler. It was observed that the relationship between temperature and conductivity were linear, fitting well in Arrhenius and not in Vogel‐Tamman‐Fulcher equation. The pre‐exponential factor, σ0 and Ea are 1.8 × 10?4 S cm?1 and 0.15 eV, respectively. The conductivity data have been supported by differential scanning calorimeter (DSC) analysis. DSC analysis showed that there was a significant change in glass transition temperature (Tg) with the filler concentration. The SEM micrograph revealed that the TiO2 particles are dispersed in the electrolyte, thus enhancing its conductivity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
A series of polyurethanes (PUs) with different polyether soft segments [polydioxolane (PDXL), polyethylene glycol (PEG), or PDXL/PEG] were synthesized successfully, and solid polymer electrolytes based on PU/LiClO4 complexes were prepared. The relations between structure and the ionic conductive properties of the PU‐based electrolytes were investigated by means of Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, and complex impedance analysis. Results showed that the glass‐transition temperature (Tg) of PDXL–PU was lower than that of PEG–PU. Doped lithium perchlorate (LiClO4) salt could be dissolved well in soft segments of PDXL–PU. The ionic conductivity of the PDXL–PU/LiClO4 complex could reach a value of 2 × 10?5 S/cm at room temperature without the addition of an organic plasticizer. The system with PDXL/PEG as a soft segment had a higher Tg and a lower ionic conductivity than the one with PDXL as a soft segment. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 103–111, 2002  相似文献   

8.
The lithium‐ion conducting gel polymer electrolytes (GPE), PVAc‐DMF‐LiClO4 of various compositions have been prepared by solution casting technique. 1H NMR results reveal the existence of DMF in the gel polymer electrolytes at ambient temperature. Structure and surface morphology characterization have been studied by X‐ray diffraction analysis (XRD) and scanning electron microscopy (SEM) measurements. Thermal and conductivity behavior of polymer‐ and plasticizer‐salt complexes have been studied by differential scanning calorimetry (DSC), TG/DTA, and impedance spectroscopy results. XRD and SEM analyses indicate the amorphous nature of the gel polymer‐salt complex. DSC measurements show a decrease in Tg with the increase in DMF concentrations. The thermal stability of the PVAc : DMF : LiClO4 gel polymer electrolytes has been found to be in the range of (30–60°C). The dc conductivity of gel polymer electrolytes, obtained from impedance spectra, has been found to vary between 7.6 × 10?7 and 4.1 × 10?4 S cm?1 at 303 K depending on the concentration of DMF (10–20 wt %) in the polymer electrolytes. The temperature dependence of conductivity of the polymer electrolyte complexes appears to obey the VTF behavior. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
The polymer electrolytes based on a polymerized ionic liquid (PIL) as polymer host and containing 1,2‐dimethyl‐3‐butylimidazolium bis(trifluoromethanesulfonyl)imide (BMMIM‐TFSI) ionic liquid, lithium TFSI salt, and nanosilica are prepared. The PIL electrolyte presents a high ionic conductivity, and it is 1.07 × 10?3 S cm?1 at 60°C, when the BMMIM‐TFSI content reaches 60% (the weight ratio of BMMIM‐TFSI/PIL). Furthermore, the electrolyte exhibits wide electrochemical stability window and good lithium stripping/plating performance. Preliminary battery tests show that Li/LiFePO4 cells with the PIL electrolytes are capable to deliver above 146 mAh g?1 at 60°C with very good capacity retention. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40928.  相似文献   

10.
A new class of ionic conducting organic/inorganic hybrid composite electrolyte with high conductivity, better electrochemical stability and mechanical behavior was prepared through the sol–gel processing between ethylene‐bridged polysilsesquioxane and poly(ethylene glycol) (PEG). The composite electrolyte with 0.05 LiClO4 per PEG repeat unit has the best conductivity up to 10?4 S/cm at room temperature with the transference number up to 0.48 and an electrochemical stability window as high as 5.5 V versus Li/Li+. Moreover, the effect of the PEG chain length on the properties of the composite electrolyte has also been studied. The interactions between ions and polymer have also been investigated for the composite electrolyte in the presence of LiClO4 by means of FTIR, DSC, and TGA. The results indicated the interaction of Li+ ions with the ether oxygen of the PEG, and the formation of transient crosslinking with LiClO4, resulting in an increase of the Tg of the composite electrolyte. The VTF‐type behavior of the ionic conductivity implied that the diffusion of the charge carriers was assisted by the segmental motions of the polymer chains. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2752–2758, 2007  相似文献   

11.
A special “pore/bead” membrane was prepared with a mesoporous inorganic filler (MCM‐41) and a P(VDF‐HFP) binder. The special “pore/bead” structure of the MCM‐41 filler not only enhanced the puncture strength of the membrane but also improved its ionic conductivity. The puncture strength of the dried “pore/bead” membrane (MCM‐41 : P(VDF‐HFP) = 1 : 1.5) was 18 N, and showed a slight decrease (16 N) after the membrane was wetted by liquid electrolyte. Additionally, the composite membrane showed excellent thermal dimensional stability. The composite membrane could be activated by adding 1M LiClO4‐EC/DMC (1 : 1 by volume). The activated membrane displayed a high ionic conductivity about 3.4 × 10?3 S cm?1 at room temperature. Its electrochemical stability window was up to 5.3 V vs. Li/Li+, indicating that it was very suitable for lithium‐ion battery application. The battery assembled using the composite electrolyte also showed reasonably good high‐rate performance. The approach of preparing a “pore/bead” membrane provides a new avenue for improving both the conductivity and the mechanical strength of polymer electrolytes for lithium batteries. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
A new poly(propylene carbonate)/poly(ethylene oxide) (PEO/PPC) polymer electrolytes (PEs) have been developed by solution‐casting technique using biodegradable PPC and PEO. The morphology, structure, and thermal properties of the PEO/PPC polymer electrolytes were investigated by scanning electron microscopy, X‐ray diffraction, and differential scanning calorimetry methods. The ionic conductivity and the electrochemical stability window of the PEO/PPC polymer electrolytes were also measured. The results showed that the Tg and the crystallinity of PEO decrease, and consequently, the ionic conductivity increases because of the addition of amorphous PPC. The PEO/50%PPC/10%LiClO4 polymer electrolyte possesses good properties such as 6.83 × 10?5 S cm?1 of ionic conductivity at room temperature and 4.5 V of the electrochemical stability window. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
A work was carried out on a solid polymeric electrolyte system comprising blends of poly (vinyl chloride) and liquid 50% epoxidized natural rubber (LENR50) as a polymer host with LiClO4 as a salt and prepared by solution casting technique. In this paper, the main study was the effect of LiClO4 salt concentration on the electrolyte properties. The effect of the salt on the electrolyte properties was characterized and analyzed with impedance spectroscopy (EIS), X‐ray diffraction (XRD), differential scanning calorimeter (DSC), and scanning electron microscopy (SEM). The EIS result showed that highest ionic conductivity was obtained at 30 wt % salt with a value of 2.3 × 10?8 S cm?1. The XRD results revealed that the LiClO4 salt was fully complexed within the polymer host as no sharp peaks were observed. However, above 30 wt % of salt, some sharp peaks were observed. This phenomenon was caused by the association of ions. Meanwhile, DSC analysis showed that Tg increased as the salt content increased. This implied that LiClO4 salt had interaction with polymer host by forming coordination bond. The morphologies' studies showed that good homogeneity and compatibility of the electrolyte were achieved. Upon the addition of the salt, formation of micropores occurred. It was noted that micropores which aid in mobility of ions in the electrolyte system has increased the ionic conductivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
A new type of inorganic filler antimony trioxide (Sb2O3) is used to prepare composite polymer electrolytes based on poly (vinyl alcohol) (PVA) and lithium perchlorate (LiClO4) by solution casting technique. The incorporation of Sb2O3 enhances the ionic conductivity at ambient temperature and exhibits the highest ionic conductivity value of 9.51×10?5 S cm?1 upon the addition of 6 wt% Sb2O3. Thermogravimetric analyses (TGA) reveal that the second weight loss is reduced. This shows the improvement in thermal stability of electrolyte film upon addition of Sb2O3. Differential scanning calorimetry (DSC) analyses show that the glass transition temperature (Tg) value decreases with incorporation of Sb2O3. X-ray diffraction (XRD) studies show that the addition of Sb2O3 decreases the degree of crystallinity whereas scanning electron microscope (SEM) studies reveal the surface morphology of the prepared composite polymer electrolytes.  相似文献   

15.
Low crosslinked copolymer of linear and hyperbranched polyurethane (CHPU) was prepared, and the ionic conductivities and thermal properties of the composite polymer electrolytes composed of CHPU and LiClO4 were investigated. The FTIR and Raman spectra analysis indicated that the polyurethane copolymer could dissolve more lithium salt than the corresponding polymer electrolytes of the non crosslinked hyperbranched polyurethane, and showed higher conductivities. At salt concentration EO/Li = 4, the electrolyte CHPU30‐LiClO4 reached its maximum conductivity, 1.51 × 10?5 S cm?1 at 25°C. DSC measurement was also used for the analysis of the thermal properties of polymer electrolytes. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3607–3613, 2007  相似文献   

16.
The UV‐vis absorption, thermal analysis, ionic conductivity, mechanical properties, and morphology of a blend of poly(dimethylsiloxane‐co‐ethylene oxide) [P(DMS‐co‐EO)] and poly(epichlorohydrin‐co‐ethylene oxide) [P(EPI‐co‐EO)] (P(DMS‐co‐EO)/P(EPI‐co‐EO) ratio of 15/85 wt %) with different concentrations of LiClO4 were studied. The maximum ionic conductivity (σ = 1.2 × 10?4 S cm?1) for the blend was obtained in the presence of 6% wt LiClO4. The crystalline phase of the blend disappeared with increasing salt concentration, whereas the glass transition temperature (Tg) progressively increased. UV‐vis absorption spectra for the blends with LiClO4 showed a transparent polymer electrolyte in the visible region. The addition of lithium salt decreased the tensile strength and elongation at break and increased Young's modulus of the blends. Scanning electron microscopy showed separation of the phases between P(DMS‐co‐EO) and P(EPI‐co‐EO), and the presence of LiClO4 made the blends more susceptible to cracking. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1230–1235, 2004  相似文献   

17.
Magnesium trifluoromethanesulfonate (Mg (CF3SO3)2)‐based polymer electrolytes (PEs) have been prepared with polyvinylidene fluoride (PVdF) as a host matrix. Tetraglyme and tetrabutyl ammonium chloride (TBACl) were used as plasticizer and filler, respectively, in the matrix by solution‐casting technique. The electrolyte containing 5 wt % TBACl exhibits the conductivity of 0.442 mS cm?1 at ambient temperature. X‐ray diffraction study reveals the amorphous nature of the PE. Linear sweep voltammetry was also performed to evaluate the decomposition potential of the electrolyte. The morphological features were analyzed by scanning electron microscope. The activation energy has also been calculated, which corroborates the ionic conductivity results. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
A method to produce nanocomposite polymer electrolytes consisting of poly(ethylene oxide) (PEO) as the polymer matrix, lithium tetrafluoroborate (LiBF4) as the lithium salt, and TiO2 as the inert ceramic filler is described. The ceramic filler, TiO2, was synthesized in situ by a sol–gel process. The morphology and crystallinity of the nanocomposite polymer electrolytes were examined by scanning electron microscopy and differential scanning calorimetry, respectively. The electrochemical properties of interest to battery applications, such as ionic conductivity, Li+ transference number, and stability window were investigated. The room‐temperature ionic conductivity of these polymer electrolytes was an order of magnitude higher than that of the TiO2 free sample. A high Li+ transference number of 0.51 was recorded, and the nanocomposite electrolyte was found to be electrochemically stable up to 4.5 V versus Li+/Li. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2815–2822, 2003  相似文献   

19.
The study presents preparation of poly methyl methacrylate (PMMA) based nanocomposite gel polymer electrolytes consisting of, salt lithium perchlorate (LiClO4), plasticizer PC/DEC and different proportions of SiO2 nanofiber by solution casting process. The effect of the composition of the electrolytes on their ionic, mechanical and thermal characteristics was investigated. Morphology of the nanocomposite electrolyte films has been observed by scanning and transmission electron microscopes. Interactions among the constituents of the composite and structural changes of the base polymer were investigated by Fourier Transform Infrared (FTIR) spectroscopy and X-ray diffraction (XRD) techniques. The maximum conductivity i.e. 10?3 Scm?1 at room temperature is obtained with the electrolyte composition of 0.6(PMMA)-0.15(PC + DEC)-0.1LiClO4 (wt%) containing 10 wt% SiO2 nanofiber and the temperature dependent conductivity data of the electrolyte follows Vogel-Tamman-Fulcher (VTF) behavior.  相似文献   

20.
Hybrid polymer dry electrolytes comprised of poly(ethylene oxide) (PEO), polyacrylonitrile (PAN), and LiClO4 were investigated. The impedance spectroscopy showed that the effect of PAN on the ion conductivity of PEO‐based electrolytes depends on the concentration of lithium salt. When the mole ratio of lithium to oxygen is 0.062 (15%LiClO4‐PEO), adding PAN will increase the ionic conductivity. Differential scanning calorimetry, NMR, and IR data suggested that the enhanced conductivity was due to both the decreasing of the PEO crystallinity and increasing of the degree of ionization of lithium salt. There was obviously no interaction between PAN and lithium ions, and PAN acts as a reinforcing filler, and hence contributes to the mechanical strength besides reducing the crystallinity of the polymer electrolytes. When the LiClO4‐PEO‐PAN hybrid polymer electrolyte was heated at 200°C under N2, PAN crosslinked partially, which further decreased the crystallinity of PEO and increased the ionic conductivity, and at the same time prevented the recrystallization of PEO upon sitting at ambient environment. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1530–1540, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号