首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, novel polyester diols of 2000 molecular weight (MW) were synthesized by reacting azelaic acid (AZ) with 1,3‐propanediol (1,3‐PDO) and diethylene glycol (DEG) in the esterification reaction catalyzed with a small amount of butyltintris(2‐ethylhexanoate). As a reference, polyester polyols of 2000 MW were synthesized from adipic acid (AA) with 1,3‐PDO and DEG. The properties of polyester polyols were evaluated. The polyester polyol based on AZ and 1,3‐PDO is 100 % renewable polyol; 1,3‐PDO used in the syntheses is renewable product produced by fermentation process of sugar. Both 1,3‐PDO‐polyester polyols exhibited crystalline transition above room temperature, while DEG‐polyester polyols were liquid at room temperature. The polyester polyols were chain‐extended with 4,4′‐diphenylmethane diisocyanate (Mondur M) and 1,4‐butanediol (BDO) to form thermoplastic polyurethanes (TPU). TPU were evaluated for mechanical and water resistance properties, and their morphology were studied via differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), and atomic force microscope (AFM). TPU based on azelate and adipate polyols were relatively soft elastomeric materials with high melting temperatures. AFM analyses of TPU indicated better phase separation in 1,3‐PDO polyester polyols with the highest phase separation observed in TPU based on 1,3‐PDO/azelaic acid polyols. Water resistance of TPU based on azelate polyols was improved as compared to TPU based on adipate polyols.  相似文献   

2.
Research and developmental work of bio-based materials from both renewable resources and biotechnological processes have gained significant interest recently. In this study, bio-based azelaic acid has been used in combination with succinic and adipic acids to synthesize co-monomeric polyester polyol soft segments for thermoplastic polyurethanes (TPUs). Hysteresis of TPUs made from co-monomeric polyester polyols were significantly lower in comparison to the reference TPUs made from monomeric polyester polyols, indicating significant improvement in dynamic properties. In addition, tensile sets of TPUs prepared with co-monomeric polyester polyols were lower compared to TPUs prepared from monomeric polyester polyols, confirming excellent dynamic properties. Improved dynamic properties of TPUs based on co-monomeric polyester polyols can be ascribed to a phase-separated morphology which was quantified as the lowest fraction of bonded urethane from FTIR spectra, reduced crystallinity in differential scanning calorimetry thermograms, narrow tan δ peaks measured using dynamic mechanical analyses, and images from atomic force microscopy.  相似文献   

3.
Polyurethanes were synthesized from polyester polyols, derived from PET Waste. The PET waste was first depolymerized by glycolysis. The glycolysized products were reacted with adipic acid to yield polyester polyols, and the polyester polyols were then reacted with either MDI or TDI to obtain polyurethanes. In this article, the thermal properties of the polyurethanes obtained are discussed in detail. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
BACKGROUND: Vegetable oil‐based polyols are a new class of renewable materials. The structure of oil‐based polyols is very different from that of petrochemical polyols, and it is closely related to the structure of oils. The objective of this work was to analyze the structural heterogeneity of soy‐based polyols and its effect on the properties of polyols and polyurethanes. RESULTS: A series of polyols with a range of hydroxyl numbers were prepared by hydroformylation and partial esterification of hydroxyls with formic acid. Polyols were reacted with diphenylmethane diisocyanate to obtain polyurethanes of different crosslinking density. Gelation was simulated using the Monte Carlo method with a calculated distribution of functionalities for each polyol. CONCLUSIONS: Most polyols are powerful crosslinkers since weight average functionality varied from 5 to 2.5 resulting in gel points from 53 to 83% conversion. Heterogeneity of polyols had a negative effect on mechanical properties of rubbery polyurethanes and this should be taken in account when designing polyols for flexible applications. This effect was not pronounced in glassy polyurethanes. Copyright © 2007 Society of Chemical Industry  相似文献   

5.
Bio‐based polyols from epoxidized soybean oil and different fatty acids were successfully prepared using a solvent‐free method in order to investigate the effect of the polyols' OH numbers on the thermal and mechanical properties of the polyurethanes prepared using them. Epoxidized soybean oil/epoxidized linseed oil was ring‐opened by methanol/glycol followed by saponification to prepare polyhydroxy fatty acids. These fatty acids and epoxidized soybean oil were then used for further solvent‐free ring‐opening reactions with DBU as catalyst, which facilitated the carboxylic ring‐opening. Gel permeation chromatography revealed that a molar ratio of carboxylic acid from polyhydroxy fatty aicds and epoxy group of 0.5 : 1 resulted in optimized polyols containing the smallest amounts of residual starting materials. The obtained polyols had varying OH numbers and the acquired polyurethane films were comprehensively characterized. With increasing OH number of the polyols the PUs displayed an increase in crosslinking density, glass transition temperature (Tg), tensile strength and Young's modulus, and a decrease in elongation and toughness. This work provides Supporting Information on the effect of OH number of polyols obtained via a solvent‐free ring‐opening method on the mechanical and thermal properties of polyurethanes, of particular interest when designing PU products for specific purposes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41213.  相似文献   

6.
A new method for the synthesis of high‐molar‐mass (MM), bio‐based polyols for elastic polyurethanes is developed. This process is based on the self‐condensation of low MM polyols (Mn ≈ 1000) and vacuum removal of the resulting glycerol. Self‐condensation products are hyperbranched estolide polyols with average MMs close to 3000 and hydroxyl numbers in the range of 40–95 mg KOH g?1. Three polyols, one with primary and two with secondary hydroxyls and different functionalities, are studied. The transesterification proceeded much faster with primary hydroxyls, leading to high‐viscosity products. The effect of functionality and reactivity of starting polyols on properties is discussed. Practical applications: The process is useful for upgrading the existing natural oil‐based polyols to higher MM, lower OH number and variable‐functionality polyols, for expanding application in the urethane field. The process is simple, involving just an oil‐based polyol, a catalyst, and heating under vacuum.  相似文献   

7.
Accumulation of polyurethane (PU) waste has increased considerably due to its extensive use. Even though many efforts are being carried out to develop more biodegradable PU, the use of these new materials is far from being commercially available. Here, we analyzed the susceptibility of solid polyester polyurethanes (PS‐PU) of commercial‐type, to biodegradation by Alicycliphilus sp. BQ8, a polyurethanolytic bacterial strain. Four polyester polyols were synthesized from dipropylene glycol (DPG) or diethylene glycol (DEG), and adipic acid (ADA) or phthalic anhydride (PHA), and were combined with either 4,4′‐ and 4,2′‐methylene diphenyldiisocyanate (MDI) or 2,4‐ and 2,6‐toluene diisocyanate (TDI). Synthesized polyols and PUs were characterized. PU biodegradation was assessed by the capacity of the polymers to support bacterial growth, and by scanning electron microscopy (SEM), Fourier transformed infrared (FTIR) spectroscopy, and gas chromatography/mass spectrometry (GC‐MS) analyses. Although all the synthesized PUs supported BQ8 growth, SEM analysis showed that PHA‐based PU foams were the most affected by bacterial growth. FTIR spectroscopy and GC‐MS analyses of bacterial treated PS‐PUs showed that they were attacked at ester and urethane groups, suggesting that esterase and amidase activities are involved. Extra‐cellular and membrane bound esterase activities were detected during the five days of analysis. Our results suggest that solid PHA‐based PUs might be more susceptible than ADA‐based PUs to microbial biodegradation in the environment. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42992.  相似文献   

8.
A series of liquid polyester polyols from adipic acid (AA), phthalic anhydride (PA), ethylene glycol, propanediol‐1,2, and trihydroxymethylpropane, varying in the molar ratio of PA to AA, were prepared. The effects of the o‐aromatic ring in the molecular chain, which came from PA, on the viscosity, glass‐transition temperature, and thermal degradation temperature of the polyester polyols were studied with viscometry, differential scanning calorimetry, and thermogravimetry. The intrinsic viscosity and glass‐transition temperature increased with the concentration of the o‐aromatic ring increasing. The temperature of the maximum thermal degradation rate for aliphatic polyester polyols was 434.20°C. Two steps of thermal degradation were found when there were o‐aromatic rings in the molecular chain. One thermal degradation temperature was 358.36–360.48°C, and the other was 412.85–427.18°C. Polyester polyols with o‐aromatic rings had higher stability at lower temperatures (<240.00°C). However, aliphatic polyester polyols had higher stability at higher temperatures (300.00–480.00°C). The activation energy and order of degradation were calculated from thermogravimetric curves. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1617–1624, 2002  相似文献   

9.
Various segmented polyurethanes of different soft segment structure with hard segment content of about 50 wt% were prepared from 4,4′‐diphenylmethane diisocyanate (MDI), 1,4‐butanediol and different polyols with a Mn of 2000 by a one‐shot, hand‐cast bulk polymerization method. The polyols used were a poly(tetramethylene ether)glycol, a poly(tetramethylene adipate)glycol, a polycaprolactonediol and two polycarbonatediols. The segmented polyurethanes were characterized by gel permeation chromatography (GPC), UV‐visible spectrometry, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), X‐ray diffraction, and their tensile properties and Shore A hardness were determined. The DSC and DMA data indicate that the miscibility between the soft segments and the hard segments of the segmented polyurethanes is dependent on the type of the soft segment, and follows the order: polycarbonate segments > polyester segments > polyether segments. The miscibility between the soft segments and the hard segments plays an important role in determining the transparency of the segmented polyurethanes. As the miscibility increases, the transparency of the segmented polyurethanes increases accordingly. The segmented polyurethanes exhibit high elongation and show ductile behavior. The tensile properties are also affected by the type of the soft segment to some extent. POLYM. ENG. SCI., 47:695–701, 2007. © 2007 Society of Plastics Engineers.  相似文献   

10.
The structure–property relationship of polyester polyols in cationically polymerized, amorphous epoxy‐based copolymers is investigated. An epoxy resin is polymerized in the presence of structurally different polyesters. These resulting copolymers show improved tensile strength and toughness. The optimal epoxide/polyester ratio depends on the structure of the polyesters. Poly(δ‐valerolactone) (PVL) reveals the highest ester group density of the investigated polyesters, which enhances physical interactions with the epoxide during polymerization as well as in the network. Furthermore, PVL leads to outstanding tensile strength, strain at break, and toughness. Among all polyester polyols examined, PVL leads to the highest gel fraction or, in other words, the most complete integration into the epoxy network. This work shows that polyesters that are present in the reactive system should be covalently integrated into the polymer network as completely as possible to obtain good mechanical properties of the amorphous copolymer. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43986.  相似文献   

11.
Waterborne polyurethane dispersions (WPUDs) containing a renewable palm oil‐based 9,10‐dihydroxystearic acid (DHSA) as an isocyanate‐reactive compound bearing ionizable carboxylic group to incorporate hydrophilic groups into the polymer chain have been successfully prepared. The WPUDs were prepared by using polyether and polyester polyols of 2000 molecular weight, DHSA and its traditional petroleum‐based counterpart 2,2‐bis(hydroxymethyl)‐propionic acid (DMPA), and an aliphatic diisocyanate (isophorone diisocyanate, IPDI). A comparison was made between the properties of WPUDs obtained using blends of DHSA and DMPA at different molar ratios and a reference WPUD based on DMPA. The particle size of polyester type WPUDs containing DHSA was reduced at a 0.5 to 0.5 molar ratio of DMPA to DHSA. A lower initial temperature was used in the preparation of NCO‐prepolymers with DHSA as compared to DMPA and this eased the preparation of WPUDs. The effect of molar ratio of DMPA to DHSA on the properties of films and coatings prepared with WPUDs was evaluated. The best properties were obtained with WPUDs prepared with a 0.5 to 0.5 molar ratio of DMPA to DHSA. The incorporation of renewable palm oil‐based DHSA into WPUDs improved water resistance (lower water uptake) and exhibited good combination of properties including hardness, adhesion strength, tensile strength, and elasticity. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43614.  相似文献   

12.
Novel acid degradable polyacetal polyols and polyacetal polyurethanes able to controlled acid degradation were developed. Polyacetal polyols with various main‐chain structures were synthesized by polyaddition of various vinyl ethers with a hydroxyl group [4‐hydroxy butyl vinyl ether (CH2?CH? O? CH2CH2CH2CH2? OH), 2‐hydroxy ethyl vinyl ether (CH2?CH? O? CH2CH2? OH), diethylene glycol monovinyl ether (CH2?CH? O? CH2CH2OCH2CH2? OH), and cyclohexanedimethanol monovinyl ether (CH2?CH? O? CH2? C6H10? CH2? OH)] with p‐toluenesulfonic acid monohydrate (TSAM) as a catalyst in the presence of the corresponding diols [1,4‐butandiol (HO? CH2CH2CH2CH2? OH), ethylene glycol (HO? CH2CH2? OH), diethylene glycol (HO? CH2CH2OCH2CH2? OH), and 1,4‐cyclohexanedimethanol (HO? CH2? C6H10? CH2? OH)], respectively. Polyacetal polyurethanes were prepared by a two‐step polymerization, using the synthesized polyacetal polyols, 4,4′‐diphenylmethane diisocyanate (MDI), and 1,4‐butandiol (BD) as a chain extender. Depending on the main‐chain structures, these polyurethanes had different glass transition temperature (from ?44 to 19 °C) and properties such as hydrophobic or hydrophilic. Polyurethanes containing the hydrophilic main‐chain exhibited the thermoresponsiveness and had the certain volume phase transition temperature (VPTT). The polyacetal polyurethanes were flexible elastomers around room temperature (~25 °C) and thermally stable (Td ≥ 310 °C) and additionally exhibited smooth degradation with a treatment of aqueous acid in THF at room temperature to give the corresponding raw material diols. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44088.  相似文献   

13.
BACKGROUND: Developing vegetable oil‐based polyols for polyurethane manufacturing is becoming highly desirable for both economic and environmental reasons. Most vegetable oils do not bear hydroxyls naturally. The objective of this work was to prepare a new soybean oil‐based polyol with high functionality of hydroxyl groups and built‐in (preformed) urethane bonds. RESULTS: A facile and improved method was developed for the transformation of epoxidized soybean oil into carbonated soybean oil under ambient pressure of CO2 gas, with tetrabutylammonium bromide/calcium chloride as catalyst/co‐catalyst couple. Ring‐opening reaction of the carbonated oil with ethanolamine led to the desired polyol. A one‐pack polyurethane system was prepared via combination of the polyol and a blocked polyisocyanate. The polyol and final polyurethanes were fully characterized, and their physical, mechanical, viscoelastic and electrical insulating properties were studied. CONCLUSION: The application of this newly developed soybean oil‐based polyol for preparation of electroinsulating casting polyurethanes was examined. The prepared soy‐based polyurethanes offered excellent thermal and electrical insulating properties. Also, tunable physical and chemical properties for the final polyurethanes were achieved by replacing part of the soybean oil‐based polyol with poly(propylene glycol) (Mn = 1000 g mol?1). Copyright © 2008 Society of Chemical Industry  相似文献   

14.
A new class of poly(amide-imide-urethane) thermoplastic elastomers based on two-step synthesis of 4,4′-methylene bis(4-phenylisocyanate) with different polyols (PPG and PTMG) and trimellitic anhydride was synthesized. Both resulting polymers showed semicrystalline structures and were readily soluble in polar solvents such as N-methyl-2-pyrrolidone and dimethyl formamide. The soluble poly(amide-imide-urethane)s afforded transparent, flexible, and tough films. Both new copolymers were then characterized by FTIR spectroscopy, universal tensile tester, simultaneous DTA/TGA (SDT), differential scanning calorimetry (DSC), and wide-angle X-ray diffraction studies, to determine their morphological structures, thermal stability, and mechanical properties. Compared to typical polyurethanes, these polymers exhibited better thermal stabilities due to the presence of imide groups. DSC and X-ray diffraction studies showed semicrystalline patterns for these polymers. Stress–strain properties revealed that these polymers have good extensibility like typical polyurethanes. © 1998 SCI.  相似文献   

15.
A series of polyester polyol resin was synthesized by using 1,4-cyclohexanedimethanol (1,4-CHDM) and three different diacids: 1,3-cyclohexanedicarboxylic acid (1,3-CHDA), isophthalic acid (IPA) and adipic acid (AA). The solubility and viscosity of the polyester polyols were determined by using methyl ethyl ketone (MEK). All the polyester polyols were crosslinked with hexamethylene diisocyanate (HDI) isocyanurate to form polyurethane coating films. These films were evaluated for their mechanical and chemical resistance properties. Studies on the film characteristics revealed that the polyurethane films based on cycloaliphatic diacid generally showed comparatively better performance properties than the polyurethane film based on aromatic and linear aliphatic diacids in general.  相似文献   

16.
Succinic acid derived from sugar is reportedly going to be an abundant and inexpensive feedstock for polymer synthesis in the near future. This article reports on succinic acid based polyester polyols prepared with butane diol and compares them to polybutylene adipate, a common polyester polyol derived from petrochemicals. Polybutylene succinate diol prepared via standard condensation polymerization techniques was directly comparable to polybutylene adipate diol. Thermoplastic polyurethanes prepared from succinate and adipate based polyols are compared using differential scanning calorimetry, dynamic mechanical spectroscopy, tensile measurements, wide and small angle X-ray scattering, transmission electron microscopy, atomic force microscopy, and abrasion tests. Thermoplastic polyurethanes made using polybutylene succinate exhibited higher glass transition temperatures and more hard-phase to soft-phase interaction than those with polybutylene adipate, presumably due to the higher number of hydrogen bond accepting carbonyls on the succinate soft segment chain. Abrasion resistance of the elastomers was a strong function of the overall hard segment volume and secondarily a function of factors related to the soft segment, with the succinate based thermoplastic polyurethanes showing a slight decrement relative to the adipate elastomers.  相似文献   

17.
Moisture-cured polyurethanes were prepared by reacting toluene diisocyanate and sebacic acid-based hydroxy esters such as ethylene glycol sebacate, propylene glycol sebacate, diethylene glycol sebacate, and polyester polyols such as poly(ethylene glycol sebacate), poly(propylene glycol sebacate), poly(diethylene glycol sebacate), and poly(butane diol sebacate). The effect of molecular weight of the esters on film properties and the catalytic effect of 3–5% triethylamine, triethanolamine, and 2-diethylaminoethanol on curing of such films were investigated. Polyurethanes were also prepared using a blend of poly(butane diol carbonate) polyol with polyester polyols. Best polyurethane compositions were obtained when sebacic acid-based polyester polyols were blended with poly(butane diol carbonate) polyol in the ratio of 3:2. These polyurethanes show good tensile strength (120–215 kg/cm2) and elongation (340–460%) properties, having high melting points (247–268°C) and good resistance to solvents and chemicals. Moreover, they are colorless and transparent.  相似文献   

18.
Vegetable oils are excellent renewable sources for chemical and oleochemistry industries, since they can be functionalized to be used in various applications. Here we present some physical and physicochemical properties of passion fruit oil and polyol derivatives obtained from this oil. The polyols were obtained by hydroxylation with in situ generation of the performic acid. Physicochemical properties, such as chromatographic analysis, iodine value, index of acidity, peroxide index, fixation index, unsaponifiables, and hydroxyl index were determined according to standard methods. Furthermore, 1H NMR was examined and physical properties including liquid density and rheometry were characterized as well. The results revealed a wide variation of the physicochemical characteristics among the oils and respective polyols. The NMR analyses demonstrated polyol structures practically without unsaturation. The liquid rheology showed that the viscosity of polyols is at least two orders of magnitude larger than the viscosity of the original oil, confirming that the hydroxylation reaction occurred successfully. The shear viscosity of the polyols did not exhibit a systematic dependence on the shear rate or significant time dependence for the examined samples. The results indicate that the polyol viscosity decreases with the drying time increasing. Practical applications : The use of renewable resources is growing and is attracting great interest in the academic and industrial fields. Vegetable oils have attracted a special attention because of their potential to replace petrochemical derivatives and to contribute to minimizing environmental impacts; vegetable oils are promising candidates for base fluids in environment‐friendly lubricants. Polyols obtained from oils open new possibilities of use as monomers for polyurethanes, which exhibit excellent properties beyond reactivity.  相似文献   

19.
Three different polyester polyols, with various oleic acid content, were used in the preparation of polyurethane (PUR) coatings. The polyols were designated as Alk28, Alk40, and Alk65, in which 28, 40, and 65 represent the percentage of oleic acid of the polyol formulations. These polyester polyols were reacted with aromatic diisocyanate [toluene diisocyanate (TDI)] to form PUR coatings. The acid value, hydroxyl value, molecular weight, and viscosity of the polyols have been determined. The reaction between the polyols and TDI was studied by Fourier Transform Infrared spectroscopy and X‐ray diffraction (XRD). The effects of varying NCO/OH ratio and oleic acid content of polyols on physical and mechanical properties of PUR films were studied. XRD results indicate that the samples are amorphous. PURs, made with Alk28, have the best mechanical properties followed by Alk40 and Alk65. The mechanical properties of the samples have increased as the NCO/OH ratio was increased from 1.2 to 1.6. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Poly(lactic acid) (PLA) is a biodegradable aliphatic polyester, but its brittleness makes it unsuitable for many packaging and appliance applications. The goal of the work reported was to create novel poly(ester urethane)s that incorporate biodegradable poly(lactic acid) diols (PLA‐OHs) and good mechanical properties of increased molecular weight via crosslinked network formation for engineering plastics applications. Three kinds of polyols (PLA‐OHs, PLA‐OHs/poly(tetramethylene ether) glycol or PLA‐OHs/poly(butylene adipate) glycol (PBA)) and two kinds of diisocyanates (4,4‐diphenylmethane diisocyanate (MDI) or toluene 2,4‐diisocyanate (TDI)) were chosen for the soft and hard segments to compare their mechanical properties. In addition, 1,4‐butanediol and trimethylolpropane were each used as chain extender agents. Results showed the PLA/PBA‐polyurethanes (PLA/PBA‐PUs) of the MDI series and the PLA/PBA‐PUs of the TDI series had improved thermal stability and enhanced mechanical properties. Degradation behavior showed the PLA‐based polyurethanes could be degraded in phosphate‐buffered saline solution and enzyme solution. © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号