首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In this work, polysaccharide nanocrystals—rodlike cellulose whiskers (CWs)—were surface‐grafted with polycaprolactone (PCL) via microwave‐assisted ring‐opening polymerization, and filaceous cellulose whisker‐graft‐polycaprolactone (CW‐g‐PCL) nanoparticles were produced. Moreover, the resultant nanoparticles were incorporated into poly(lactic acid) (PLA) as a matrix, and they showed superior function for enhancing the mechanical performance of PLA‐based materials in comparison with platelet‐like nanoparticles of starch nanocrystal‐graft‐PCL. The optimal loading level of CW‐g‐PCL was 8 wt %, and this resulted in simultaneous enhancements of the strength and elongation of approximately 1.9‐ and 10.7‐fold, respectively, over those of the neat PLA material. In this case, the rigid CW nanoparticles contributed to the endurance of higher stress, whereas the grafted PCL chains improved the association between the PLA matrix and the CW‐g‐PCL filler and hence facilitated the transfer of stress to the rigid CW nanoparticles. Furthermore, such a fully biodegradable PLA‐based nanocomposite shows great potential for environmentally friendly materials because of its high mechanical performance. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Poly(lactic acid)/organo‐montmorillonite (PLA/OMMT) nanocomposites toughened with maleated styrene‐ethylene/butylene‐styrene (SEBS‐g‐MAH) were prepared by melt‐compounding using co‐rotating twin‐screw extruder followed by injection molding. The dispersibility and intercalation/exfoliation of OMMT in PLA was characterized using X‐ray diffraction and transmission electron microscopy (TEM). The mechanical properties of the PLA nanocomposites was investigated by tensile and Izod impact tests. Thermogravimetric analyzer and differential scanning calorimeter were used to study the thermal behaviors of the nanocomposite. The homogenous dispersion of the OMMT silicate layers and SEBS‐g‐MAH encapsulated OMMT layered silicate can be observed from TEM. Impact strength and elongation at break of the PLA nanocomposites was enhanced significantly by the addition of SEBS‐g‐MAH. Thermal stability of the PLA/OMMT nanocomposites was improved in the presence of SEBS‐g‐MAH. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
The aim of this study was to improve the toughness of recycled poly(ethylene terephthalate) (PET)/glass fiber (GF) blends through the addition of ethylene–butyl acrylate–glycidyl methacrylate copolymer (EBAGMA) and maleic anhydride grafted polyethylene–octene (POE‐g‐MAH) individually. The morphology and mechanical properties of the ternary blend were also examined in this study. EBAGMA was more effective in toughening recycled PET/GF blends than POE‐g‐MAH; this resulted from its better compatibility with PET and stronger fiber/matrix bonding, as indicated by scanning electron microscopy images. The PET/GF/EBAGMA ternary blend had improved impact strength and well‐balanced mechanical properties at a loading of 8 wt % EBAGMA. The addition of POE‐g‐MAH weakened the fiber/matrix bonding due to more POE‐g‐MAH coated on the GF, which led to weakened impact strength, tensile strength, and flexural modulus. According to dynamic rheometer testing, the use of both EBAGMA and POE‐g‐MAH remarkably increased the melt storage modulus and dynamic viscosity. Differential scanning calorimetry analysis showed that the addition of EBAGMA lowered the crystallization rate of the PET/GF blend, whereas POE‐g‐MAH increased it. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Various compositions of nontoxic biodegradable poly(lactic acid) (PLA)/chitosan‐graft‐lactic acid oligomer (CH‐g‐OLLA) bionanocomposite films were fabricated with a solution casting technique by the dispersal of CH‐g‐OLLA copolymer at different amounts (1, 3, and 5 wt %) into the PLA matrix. The filler (CH‐g‐OLLA) was synthesized by an in situ condensation polymerization reaction in a microwave, and the grafting of lactic acid oligomer chains at the C2 position of the chitosan backbone was confirmed by the presence of new peaks at 179.08 and 174.41 ppm in 13C‐NMR analysis. The transparency results show the synergic effect of CH‐g‐OLLA in the form of reduced transparency and excellent blocking capability of UV light. Dynamic mechanical analysis confirmed a reduction in the glass‐transition temperature (up to ~13 °C) with increasing filler concentration; this signified the improvement in the elongation of bionanocomposite films. The rheological studies showed the viscous behavior of the PLA and PLA–CH‐g‐OLLA bionanocomposite films as the storage modulus values were found to be lower than the loss modulus values over the entire range of angular frequency at 180 °C. Furthermore, a Cole–Cole plot and Han plot described the uniform dispersion of the filler in the PLA matrix, its agglomeration at higher loading, and the structural change between the PLA and PLA–CH‐g‐OLLA bionanocomposite films. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45546.  相似文献   

5.
Polyamide 6/carbon fiber (PA6/CF) composites toughened with maleated elastomers were prepared by melt blending using twin‐screw extruder followed by injection molding. Three kinds of maleated elastomers, maleic anhydride (MAH)‐grafted ethylene‐vinyl acetate copolymer (EVA‐g‐MAH), MAH‐grafted ethylene‐propylene‐diene terpolymer (EPDM‐g‐MAH), and MAH‐grafted hydrogenated styrene‐butadiene‐styrene (SEBS‐g‐MAH), were used to toughen the PA6/CF composites. The mechanical properties, morphology, nonisothermal crystallization, and subsequent melting behavior of PA6 hybrid composites were investigated. Mechanical tests indicated that incorporation of elastomers improved the impact properties of CF‐reinforced PA composites accompanied with loss of tensile strength and modulus. It was observed from scanning electron microscope photographs that modification with maleated elastomers improved the interfacial adhesion between the CFs and PA6 matrix. Nonisothermal crystallization behavior showed that three kinds of elastomers had negative effect on crystallization and retarded crystallization of PA6. Kissinger's analysis illustrated that addition of CF slightly increased the crystallization activation energy of PA6, whereas incorporation of elastomers reversed it compared with pure PA6. Furthermore, a slight decrease in crystallinity and melting peak of the composites after incorporation of elastomers was observed compared with pure PA6. Polarizing optical microscope results showed that the transcrystallinity phenomenon seemed to be also affected when the matrix was added by the elastomers. POLYM. COMPOS., 35:2170–2179, 2014. © 2014 Society of Plastics Engineers  相似文献   

6.
Polylactide (PLA)/organoclay composites were prepared by melt compounding with 4 phr of two different types of organoclays (cloisite 20A and cloisite 30B). Structure development and nonisothermal kinetic of cold crystallization of PLA/organoclay nanocomposites were examined by using of X‐ray diffraction technique, transmission electron microscopy, melt viscoelastic measurements, and differential scanning calorimetry. XRD results demonstrated that the melt intercalation of PLA chains into the cloisite 30B and cloisite 20A galleries was achieved to the same extent. However, it was shown that, PLA/cloisite 20A sample exhibited a significant viscosity upturn and a pronounced nonterminal low frequency storage modulus whose values were greater than those of PLA/cloisite 30B nanocomposite. A detailed analysis of the linear melt viscoelastic properties for the filled and unfilled samples at low frequencies was conducted by fitting the complex viscosity and storage modulus data with Carreau–Yasuda and Fractional Zener models, respectively. The glass transition, cold crystallization, melting temperature, and degree of crystallinity of virgin PLA and PLA/organoclay nanocomposites were inspected. Subsequently, the cold crystallization kinetics was analyzed by Avrami, Jezioney, and Lauritzen–Hoffman kinetic models. It was shown that, the crystallization rate followed Avrami equation with the exponent n around 2.4. From Lauritzen–Hoffman equation and Kissinger model, the nucleation parameter Kg and activation energy were estimated, respectively. J. VINYL ADDIT. TECHNOL., 25:48–58, 2019. © 2018 Society of Plastics Engineers  相似文献   

7.
Poly(L lactide) (PLA) was blended with polypropylene (PP) at various ratios (PLA:PP = 90 : 10, 80 : 20, 70 : 30, and 50 : 50) with a melt‐blending technique in an attempt to improve the melt processability of PLA. Maleic anhydride (MAH)‐grafted PP and glycidyl methacrylate were used as the reactive compatibilizers to induce miscibility in the blend. The PLA/PP blend at a blend ratio of 90 : 10, exhibited optimum mechanical performance. Differential scanning calorimetry and thermogravimetric analysis studies showed that the PLA/PP/MAH‐g‐PP blend had the maximum thermal stability with the support of the heat deflection temperature values. Furthermore, dynamic mechanical analysis findings revealed an increase in the glass‐transition temperature and storage modulus with the addition of MAH‐g‐PP compatibilizer. The interaction between the compatibilizers and constituent polymers was confirmed from Fourier transform infrared spectra, and scanning electron microscopy of impact‐fractured samples showed that the soft PP phase was dispersed within the PLA matrix, and a decrease in the domain size of the dispersed phase was observed with the incorporation of MAH‐g‐PP, which acted as a compatibilizer to improve the compatibility between PLA and PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Blends of recycled poly(ethylene terephthalate) (R‐PET) and (styrene‐ethylene‐ethylene‐propylene‐styrene) block copolymer (SEEPS) compatibilized with (maleic anhydride)‐grafted‐styrene‐ethylene‐butylene‐styrene (SEBS‐g‐MAH) were prepared by melt blending. The compatibilizing effects of SEBS‐g‐MAH were investigated systematically by study of the morphology, linear viscoelastic behavior, and thermal and mechanical properties of the blends. The results show that there is good agreement between the results obtained by rheological measurement and morphological analysis. The rheological test shows that the melt elasticity and melt strength of the blends increase with the addition of SEBS‐g‐MAH. The Cole‐Cole plots and van Gurp‐Palmen plots confirm the compatibilizing effect of SEBS‐g‐MAH. However, the Palierne model fails to predict the linear viscoelastic properties of the blends. The morphology observation shows that all blends exhibit a droplet‐matrix morphology. In addition, the SEEPS particle size in the (R‐PET)/SEEPS blends is significantly decreased and dispersed uniformly by the addition of SEBS‐g‐MAH. Differential scanning calorimeter analysis shows that the crystallization behavior of R‐PET is restricted by the incorporation of SEEPS, whereas the addition of SEBS‐g‐MAH improves the crystallization behavior of R‐PET compared with that of uncompatibilized (R‐PET)/SEEPS blends. The Charpy impact strength of the blends shows the highest value at SEBS‐g‐MAH content of 10%, which is about 210% higher than that of pure R‐PET. J. VINYL ADDIT. TECHNOL., 22:342–349, 2016. © 2014 Society of Plastics Engineers  相似文献   

9.
This study describes the reinforcement effect of surface modified mullite fibers on the crystallization, thermal stability, and mechanical properties of polypropylene (PP). The nanocomposites were developed using polypropylene‐grafted‐maleic anhydride (PP‐g‐MA) as compatibilizer with different weight ratios (0.5, 1.0, 1.5, 2.5, 5.0, and 10.0 wt %) of amine functionalized mullite fibers (AMUF) via solution blending method. Chemical grafting of AMUF with PP‐g‐MA resulted in enhanced filler dispersion in the polymer as well as effective filler‐polymer interactions. The dispersion of nanofiller in the polymer matrix was identified using scanning electron microscopy (SEM) elemental mapping and transmission electron microscopy (TEM) analysis. AMUF increased the Young's modulus of PP in the nanocomposites up to a 5 wt % filler content, however, at 10 wt % loading, a decrease in the modulus resulted due to agglomeration of AMUF. The impact strength of PP increased simultaneously with the modulus as a function of AMUF content (up to 5 wt %). The mechanical properties of PP‐AMUF nanocomposites exhibited improved thermal performance as compared to pure PP matrix, thus, confirming the overall potential of the generated composites for a variety of structural applications. The mechanical properties of 5 wt % of AMUF filled PP nanocomposite were also compared with PP nanocomposites generated with unmodified MUF and the results confirmed superior mechanical properties on incorporation of modified filler. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43725.  相似文献   

10.
The dynamic vulcanization process, usually used for the preparation of thermoplastic elastomers, was used to prepare polypropylene (PP)/epoxy blends. The blends had crosslinked epoxy resin particles finely dispersed in the PP matrix, and they were called dynamically cured PP/epoxy blends. Maleic anhydride grafted polypropylene (MAH‐g‐PP) was used as a compatibilizer. The effects of the reactive compatibilization and dynamic cure were studied with rheometry, capillary rheometry, and scanning electron microscopy (SEM). The crystallization behavior and mechanical properties of PP/epoxy, PP/MAH‐g‐PP/epoxy, and dynamically cured PP/epoxy blends were also investigated. The increase in the torque at equilibrium for the PP/MAH‐g‐PP/epoxy blends indicated the reaction between maleic anhydride groups of MAH‐g‐PP and the epoxy resin. The torque at equilibrium of the dynamically cured PP/epoxy blends increased with increasing epoxy resin content. Capillary rheological measurements also showed that the addition of MAH‐g‐PP or an increasing epoxy resin content increased the viscosity of PP/epoxy blends. SEM micrographs indicated that the PP/epoxy blends compatibilized with PP/MAH‐g‐PP had finer domains and more obscure boundaries than the PP/epoxy blends. A shift of the crystallization peak to a higher temperature for all the PP/epoxy blends indicated that uncured and cured epoxy resin particles in the blends could act as effective nucleating agents. The spherulites of pure PP were larger than those of PP in the PP/epoxy, PP/MAH‐g‐PP/epoxy, and dynamically cured PP/epoxy blends, as measured by polarized optical microscopy. The dynamically cured PP/epoxy blends had better mechanical properties than the PP/epoxy and PP/MAH‐g‐PP/epoxy blends. With increasing epoxy resin content, the flexural modulus of all the blends increased significantly, and the impact strength and tensile strength increased slightly, whereas the elongation at break decreased dramatically. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1437–1448, 2004  相似文献   

11.
With maleic anhydride grafted polypropylene (PP‐g‐MAH) as a compatibilizer, composites of block‐copolymerized polypropylene (B‐PP)/nanoclay were prepared. The effects of the PP‐g‐MAH and nanoclay content on the crystallization and rheological properties of B‐PP were investigated. The microcellular foaming behavior of the B‐PP/nanoclay composite material was studied with a single‐screw extruder foaming system with supercritical (SC) carbon dioxide (CO2) as the foaming agent. The experimental results show that the addition of nanoclay and PP‐g‐MAH decreased the melt strength and complex viscosity of B‐PP. When 3 wt % SC CO2 was injected as the foaming agent for the extrusion foaming process, the introduction of nanoclay and PP‐g‐MAH significantly increased the expansion ratio of the obtained foamed samples as compared with that of the pure B‐PP matrix, lowered the die pressure, and increased the cell population density of the foamed samples to some extent. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44094.  相似文献   

12.
Nanocomposites based on (70/30) blends of natural rubber (NR), styrene‐butadiene rubber (SBR), and organoclay (OC) have been prepared successfully via melt‐mixing process. Effects of the extent of polymers/clay interactions upon the developed microstructure, fatigue life, and dynamic energy loss by the nanocomposites have been investigated. Maleated EPDM (EPDM‐g‐MAH) and epoxidized NR (ENR50) were employed as compatibilizer. Nanocomposites were characterized by means of X‐ray diffractometer (XRD), transmission electron microscope (TEM), scanning electron microscope, atomic force microscopy, root mean square, and dynamic mechanical thermal analysis. EPDM‐g‐MAH showed more potential in enhancing dispersion of the clay nanolayers and their interaction with rubber phases. More potential for separating and dispersing the clay nanoplatelets with better interface enhancement was exhibited by EPDM‐g‐MAH as compatibilizer. This was consistent with higher resistance towards large strain cyclic deformations along with more heat build‐up characteristics showed by EPDM‐g‐MAH based nanocomposites especially at compatibilizer/organoclay ratio of 3. Pronounced non‐terminal behavior within low frequency region was also observed for melt storage modulus of this nanocomposite, indicating higher extent of intercalation/exfoliation microstructure with reinforced interfaces than the nanocomposite generated by ENR50. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
The nonisothermal crystallization kinetics of high‐density polyethylene (HDPE) and polyethylene (PE)/PE‐grafted maleic anhydride (PE‐g‐MAH)/organic‐montmorillonite (Org‐MMT) nanocomposite were investigated by differential scanning calorimetry (DSC) at various cooling rates. Avrami analysis modified by Jeziorny, Ozawa analysis, and a method developed by Liu well described the nonisothermal crystallization process of these samples. The difference in the exponent n, m, and a between HDPE and the nanocomposite indicated that nucleation mechanism and dimension of spherulite growth of the nanocomposite were different from that of HDPE to some extent. The values of half‐time (t1/2), K(T), and F(T) showed that the crystallization rate increased with the increase of cooling rates for HDPE and composite, but the crystallization rate of composite was faster than that of HDPE at a given cooling rate. Moreover, the method proposed by Kissinger was used to evaluate the activation energy of the mentioned samples. It was 223.7 kJ/mol for composite, which was much smaller than that for HDPE (304.6 kJ/mol). Overall, the results indicated that the addition of Org‐MMT and PE‐g‐MAH could accelerate the overall nonisothermal crystallization process of PE. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3054–3059, 2004  相似文献   

14.
Quantitative analysis of isothermal crystallization kinetics of PLA/clay nanocomposite and PLA/clay/regenerated cellulose fiber (RCF) hybrid composite has been conducted. The crystallization rate constant (k) according to Avrami equation was higher in PLA/clay nanocomposite than in PLA/clay/RCF hybrid composite at the same crystallization temperature. The equilibrium melting temperature obtained by Hoffman–Weeks equation was almost same in both composites, whereas stability parameter was greater in hybrid composite than in nanocomposite. Activation energy of hybrid composite for crystallization was larger than that of nanocomposite. The value of nucleation parameter (Kg) and surface free energy (se) of hybrid composite were larger than nanocomposite, indicating that hybrid composite has a less folding regularity than nanocomposite. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
The present work focuses on the microwave synthesis of lactic acid‐grafted‐gum arabic (LA‐g‐GA) by polycondensation reaction and its influence as an additive to improve the gas barrier properties of poly(lactic acid) (PLA) films, prepared by solution casting method. It is observed that during the synthesis of LA‐g‐GA, hydrophilic gum is converted into hydrophobic due to grafting of in situ grown hydrophobic oligo‐(lactic acid). Subsequently, PLA/LA‐g‐GA bionanocomposite films are fabricated and characterized for structural, thermal, mechanical and gas barrier properties. Path breaking reduction in oxygen permeability (OP) of ~10 folds is achieved in case of PLA films containing LA‐g‐GA as filler. However, water vapor transmission rate (WVTR) is reduced up to 27% after 5 wt % addition of filler. Reduction in OP of this order of magnitude enables the PLA to compete with PET in term of enhancing shelf life and maintaining the food quality. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43458.  相似文献   

16.
Ecocomposites were produced by incorporating coconut shell powder (CSP) into polylactic acid (PLA) resin. The effect of filler content and chemical modification on the mechanical properties, thermal properties, and morphology of PLA/CSP ecocomposites were investigated. The addition of filler has decreased the tensile strength and elongation at break of PLA/CSP ecocomposites. However, tensile strength and modulus of elasticity of PLA/CSP ecocomposites were enhanced by maleic acid treatment. Meanwhile, glass transition temperature (Tg) and crystallinity (Xc) of PLA/CSP ecocomposites increased at 30 php of filler content and increased the presence of maleic acid (MA). However, the melting temperature (Tm) and crystallization temperature (Tc) were not significantly changed with the filler content and MA modification The thermal stability of PLA/CSP ecocomposites increased with the CSP content. The MA modification improved the thermal stability of PLA/CSP ecocomposites through better filler–matrix interaction. The improvement was confirmed by scanning electron microscope study. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

17.
18.
Nanocomposite vulcanizates based on ethylene–propylene–diene monomer rubber (EPDM) and organically modified montmorillonite with improved mechanical and barrier properties were prepared via a melt‐mixing process in the presence of maleic anhydride grafted ethylene–propylene–diene monomer rubber (EPDM‐g‐MAH) as an interfacial compatibilizer. The effects of the EPDM Mooney viscosity as the matrix and also the compatibilizer molecular weight and its maleation degree on the developed microstructure were also studied. The annealing of the vulcanized nanocomposites based on a low‐Mooney‐viscosity EPDM matrix and low‐Mooney‐viscosity EPDM‐g‐MAH enhanced the flocculation of the dispersed clay platelets; this implied that the flocculated structure for the clay nanolayers was more thermodynamically preferred in these nanocomposites. This was verified by the decrease in the oxygen permeability of the nanocomposite vulcanizates with increasing annealing time. The tendency of the clay nanosilicate layers to flocculate within the matrix of EPDM was found to be influenced by the clay volume fraction, the maleation degree, and also, the Mooney viscosity of the compatibilizer. Interfacially compatibilized nanocomposites based on high‐molecular‐weight EPDM exhibited a more disordered dispersion of the clay nanolayers, with a broadened relaxation time spectra; this was attributed to the higher shearing subjected to the mix during the melt‐blending process. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
In the present study, an epoxy resin was dynamically cured in a polypropylene (PP)/maleic anhydride–grafted PP (MAH‐g‐PP)/talc matrix to prepare dynamically cured PP/MAH‐g‐PP/talc/epoxy composites. An increase in the torque at equilibrium showed that epoxy resin in the PP/MAH‐g‐PP/talc composites had been cured by 2‐ethylene‐4‐methane‐imidazole. Scanning electron microscopy analysis showed that MAH‐g‐PP and an epoxy resin had effectively increased the interaction adhesion between PP and the talc in the PP/talc composites. Dynamic curing of the epoxy resin further increased the interaction adhesion. The dynamically cured PP/MAH‐g‐PP/talc/epoxy composites had higher crystallization peaks than did the PP/talc composites. Thermogravimetric analysis showed that the addition of MAH‐g‐PP and the epoxy resin into the PP/talc composites caused an obvious improvement in the thermal stability. The dynamically cured PP/MAH‐g‐PP/talc/epoxy composites had the best thermal stability of all the PP/talc composites. The PP/MAH‐g‐PP/talc/epoxy composites had better mechanical properties than did the PP/MAH‐g‐PP/talc composites, and the dynamically cured PP/MAH‐g‐PP/talc/epoxy composites had the best mechanical properties of all the PP/talc composites, which can be attributed to the better interaction adhesion between the PP and the talc. The suitable content of epoxy resin in the composites was about 5 wt %. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

20.
Four‐armed star poly(l ‐ lactide)‐grafted multiwalled carbon nanotubes (CNTs‐g‐4PLLA) were synthesized through the nucleophilic substitution reaction between 4PLLA and acryl chloride of CNTs and then characterized by transmission electron microscope, X‐ray photoelectron spectroscopy, thermal gravimetric analysis (TGA), and ultraviolet visible spectrophotometer. The results indicated that 4PLLA was successfully grafted onto CNTs, and CNTs‐g‐4PLLA contained 37.7 wt% of 4PLLA. PLLA/CNTs‐g‐4PLLA nanocomposites were prepared by solution casting with different CNTs‐g‐4PLLA content. Rheological behavior of PLLA/CNTs‐g‐4PLLA nanocomposites was measured using a rheometer. The result showed that CNTs‐g‐4PLLA formed a network structure at percolation concentration, which improves obviously rheological properties of PLLA in the molten state. The crystallization behavior and crystal structure of the nanocomposites were comprehensive evaluated through differential scanning calorimetry, X‐ray diffraction, and polarizing optical microscope. The results found that CNTs‐g‐4PLLA played two roles in PLLA crystallization. The addition of CNTs‐g‐4PLLA acted as nucleating agent and obviously accelerated the spherulites growth under percolation concentration, while it inhibited the movement of PLLA chains at above percolation concentration, resulting in the decrease of crystallinity. Thermal stability and mechanical properties of the nanocomposites were also investigated using TGA, dynamic mechanical analysis, and tensile test. These results indicated that the incorporation of CNT‐g‐4PLLA into the PLLA matrix improved the thermal stability, storage modulus, and tensile strength of the nanocomposites. POLYM. COMPOS., 37:2744–2755, 2016. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号