首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Composite films in coacervation condition offer an alternative to change properties of protein-based films, and they present potential applications such as inclusion, stabilization, and release of bioactive compounds in foods. Maximum interactions between soy protein isolate (SPI) (5%) and high methoxyl pectin (PEC) (0.5, 1, 1.5, and 2%), by zeta potential analysis, are found at a pH of 3. The transparency of the SPI films is lost at this pH. When PEC is added to SPI films, the elasticity, solubility, and permeability to water vapor are not significantly altered, but the tensile strength increases. Permeabilities to oxygen are higher for low PEC contents, but as PEC is added, their values are typical of SPI films produced at a pH of 11. A homogeneous structure is found at the higher PEC concentrations. The interactions of PEC–SPI can be useful to tailor films and coatings for applications such as to carry and protect substances of interest. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48732.  相似文献   

2.
Thiodiglycol (TDG) is a relatively nontoxic compound from organic wastes. By using TDG as a plasticizer with weights from 2.5 to 40%, we prepared soy protein isolate (SPI) films by a compression‐molding technique at 140°C and 15 MPa. The TDG‐plasticized films (SPI–TDG films) were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, thermogravimetric analysis, optical transmittance, and water uptake experiments. The SPI–TDG film plasticized with 25% TDG exhibited good mechanical properties, such as a tensile strength and modulus of 20.3 and 582 MPa, respectively, whereas the SPI–glycerol film with 25% glycerol had a tensile strength and modulus of 16.2 and 436 MPa, respectively. The results from the thermogravimetric analysis and water uptake experiments indicated that the thermal stability and water resistance of the TDG‐plasticized SPI materials were higher than that of the glycerol‐plasticized one. The improvements in the mechanical properties, water resistance, and thermal stability of the SPI–TDG films could be attributed to the strong intermolecular hydrogen bonding between soy protein and TDG and the presence of fewer hydroxyl groups in TDG, as compared structurally with glycerol. This study provided a new plasticizer for the preparation of soy protein materials. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Effect of titanium dioxide (TiO2) on morphology and mechanical properties of poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) blend films prepared at different TiO2 contents by a melt casting process was studied. The results showed that tensile moduli in both the machine direction (MD) and the transverse direction (TD) increased with increasing TiO2 content, and calculated tensile moduli based on the Halpin–Tsai and the Kerner model were consistent with experimental ones in both the MD and TD of films containing 10 wt % TiO2. However, experimental tensile moduli exhibited smaller values compared with calculated ones, as the TiO2 content increased to 30 wt %, and it was assumed that this is due to the decrease of crystallinity of PVDF. Morphological observations indicated that TiO2 particles did not affect crystal structures of PVDF and the morphology of PVDF/PMMA amorphous phase, but hindered the crystallization of PVDF. The MD and TD elongation at break exhibited >200 and <20%, respectively. The SEM micrographs revealed that spherulites could deform along the MD when the tensile force was applied along the direction. By contrast, spherulites could not deform along the TD and fractured at very small elongation, owing to the anisotropic morphology of spherulites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40454.  相似文献   

4.
The application of graphene (Gr) to enhance atomic oxygen (AO) erosion resistance and mechanical properties was demonstrated in this study. Gr‐reinforced cellulose acetate (CA) composite films were obtained by flattening with a glass rod, and the AO erosion resistance was investigated in a plasma‐type, ground‐based AO effect simulation facility. Significant improvements in the mechanical properties and AO erosion resistance were achieved at relatively low Gr contents. A 59 ± 7% decrease in the mass loss and a 12 ± 3% increase in the tensile strength were achieved by the addition of only 1 wt % Gr. Moreover, the layered structure of the fractured surfaces and the excellent mechanical properties illustrated the homogeneous dispersion of Gr in the CA matrix and the strong interactions between Gr and CA. Furthermore, Gr flakes served as shields to defend the underside of CA from AO erosion because of the specific two‐dimensional structure and outstanding AO erosion resistance. Therefore, this research provides a new and effective strategy for improving the mechanical strength and AO erosion resistance of polymer materials. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40292.  相似文献   

5.
Guar gum is a naturally occurring galactomannan, which is extremely hydrophilic in nature. Hydroxypropyl guar gum (HPG) was subjected to acetylation using acetic anhydride and pyridine. The effect of the reduction in the hydrophilic nature of the polymer on its filler properties was studied by using the derivatized guar gum as filler in an unsaturated polyester composite. The effect of degree of substitution and the concentration of filler on the rheological, chemical, and mechanical properties of the composites were studied. Results indicated that an increase in the acetate content in the HPG resulted in an increased polymer–filler interaction. However, the composites resulting from these derivatized HPGs showed reduced mechanical properties. This decrease in the mechanical properties were attributed to the decrease in the hydrogen bonding in the filler particles, thus reducing the cohesiveness and strength of the filler particles themselves. Thus, polysaccharides can be used as fillers but chemically modifying them results in a change in the basic nature of the filler itself and is not just restricted to surface modification as is the case of inorganic fillers and fibers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Biodegradable and biocompatible composites based on soy protein isolate (SPI) and various cellulose derivatives have been prepared, and the dependence of structures and mechanical properties on the content and species of cellulose derivatives for the composites were investigated by X‐ray diffraction, differential scanning calorimetry, scanning electron microscope, and tensile test. The selected cellulose derivatives, such as methyl cellulose (MC), hydroxyethyl cellulose (HEC), and hydroxypropyl cellulose, were miscible with SPI when the content of cellulose derivatives was low, and then the isolated crystalline domains, shown as the structures of network and great aggregate, formed with an increase of cellulose derivative content. The miscible blends could produce the higher strength, and even result in the simultaneous enhancement of strength and elongation for the HEC/SPI and MC/SPI blends. Meanwhile, the moderate content of great MC domains also reinforced the materials. However, the damage of original ordered structure in SPI gave the decreased modulus. Since all the components, i.e., cellulose derivatives and soy protein, are biocompatible, the resultant composites are not only used as environment‐friendly material, but the biomedical application can be expected, especially for the tissue engineering scaffold. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
We have successfully prepared a series of blend membranes from cellulose and soy protein isolate (SPI) in NaOH/thiourea aqueous solution by coagulating with 5 wt % H2SO4 aqueous solution. The structure and properties of the membranes were characterized by Fourier transform infrared spectroscopy, ultraviolet‐visible spectrometry, dynamic mechanical thermal analysis, scanning electron microscopy (SEM), transmission electron microscopy, and tensile testing. The effects of SPI content (WSPI) on the structure and properties of the blend membranes were investigated. The results revealed that SPI and cellulose are miscible in a good or a certain extent when the SPI content is less than 40 wt %. The pore structure and properties of the blend membranes were significantly improved by incorporation of SPI into cellulose. With an increase in WSPI from 10 to 50 wt %, the apparent size of the pore (2re) measured by SEM for the blend membranes increased from 115 nm to 2.43 μm, and the pore size (2rf) measured by the flow rate method increased from 43 to 59 nm. The tensile strength (σb) and thermal stability of the blend membranes with lower than 40 wt % of WSPI are higher than that of the pure cellulose membrane, owing to the strong interaction between SPI and cellulose. The values of tensile strength and elongation at break for the blend membranes with 10 wt % of WSPI reached 136 MPa and 12%, respectively. The blend membranes containing protein can be used in water because of keeping σ of 10 to 37 MPa. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 748–757, 2004  相似文献   

8.
The hydrolyzed soy protein isolate (HSPI) with different hydrolysis degree was applied to modify urea‐formaldehyde resins (UF) via copolymerization process. The properties of HSPI were characterized by attenuated total reflection Fourier transform infrared spectroscopy (ATR‐FTIR) and TGA. The results show that HSPI with different hydrolysis degree is obtained. 1H NMR and ATR‐FTIR spectra indicate that HSPI with different hydrolysis degree can incorporate into the structure of cured and uncured UF. The UF modified with higher hydrolysis degree of HSPI possess more stable units and contribute to the lower exothermic peak temperature in DSC curves. The bonding strength of HSPI modified UF increases as the hydrolysis degree of HSPI increases at the hot‐press temperature of 120°C and decreases at the hot‐press temperature of 150°C. The best bonding strength is 1.53 MPa at the hot‐press temperature of 135°C and improved 56.12% compared with UF. In addition, the formaldehyde emission is dramatically reduced. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41469.  相似文献   

9.
Low, intermediate, and high strain rate compression testing (1.7 × 10?4 to 2500 s?1) of the hydroxyl‐terminated polybutadiene (HTPB) propellant at room temperature, were performed using a universal testing machine, a hydraulic testing machine, and a split Hopkinson pressure bar (SHPB), respectively. Results show that the stress linearly increases with strain at each condition; the increasing trend of stress at a given strain with the logarithm of strain rate changes from a linear to an exponential form at 1 s?1. By combining these characteristics, we propose a rate‐dependent constitutive model which is a linearly elastic component as a base model, then multiplied by a rate‐dependent component. Comparison of model with experimental data shows that it can characterize the compressive mechanical properties of HTPB propellant at strain rates from 1.7 × 10?4 to 2500 s?1. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43512.  相似文献   

10.
研究木薯淀粉与瓜尔胶、木薯淀粉与阴离子瓜尔胶的复合膜,淀粉含量为复合基质量的100%、80%、60%、40%和20%制成复合膜,对膜的性质用红外、热重以及扫描电镜分别表征,对膜的力学性能、水蒸气透过率和吸水性能测试。分别以强度和伸长率为指标得出最优的复合膜配比。以强度为指标的最优复合膜成分:淀粉为80%,瓜尔胶为20%,得到样本1-2与原淀粉膜相比强度提高50%,伸长率下降30%,水蒸气透过率下降15.8%,吸水率几乎没有变化。以伸长率为指标的最优膜成分:淀粉80%,阴离子瓜尔胶20%,得到样本2-1与原木薯淀粉膜相比伸长率提高了142%,但强度降低了22%,水蒸气透过率下降了5.4%,吸水性降低了5.5%。成膜条件为:淀粉糊化温度为95℃,反应时间0.5 h,烘干温度为50℃。  相似文献   

11.
Association of a method of the incorporation of graphene oxide (GO) into sodium alginate (Na‐alg) polymer matrix with a method of the use multivalent cations crosslinker was put forward to synthesize novel Na‐alg/GO nanocomposite films. The structures, morphologies, and the properties of Na‐alg/GO films were characterized by Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), field‐emission scanning electron microscopy (FE‐SEM), thermogravimetric analysis (TGA), and tensile tests. The results revealed that the interlayer distance of GO sheets increased from 0.83 nm to 1.08 nm after assembling with Na‐alg, and Na‐alg inserted into GO layers crosslinking with multivalent cations increased the interlayer distance further. Ionic crosslinking significantly enhanced thermal and mechanical properties of Na‐alg/GO nanocomposite films. In particular, Fe3+ led to Na‐alg/GO nanocomposite films of significantly higher tensile strength and modulus than Ca2+ and Ba2+. The excellent thermal and mechanical properties of these novel Na‐alg/GO nanocomposite films may open up applications for Na‐alg films. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43616.  相似文献   

12.
A polymer composite of polyethylene (PE) and polydimethylsiloxane (PDMS) was prepared using supercritical carbon dioxide despite the two polymers usually being immiscible and possessing a phase‐separated morphology. This article reports in detail the preparation, microstructure, crystallinity, and mechanical properties of the resulting PE/PDMS composite. The formation mechanism of the PE/PDMS composite consisted of supercritical impregnation of an octamethylcyclotetrasiloxane (D4) monomer and an initiator into a PE substrate followed by in situ polymerization within the substrate. Differential scanning calorimetry, wide‐angle X‐ray diffraction, and small‐angle X‐ray scattering measurements showed that PE and PDMS were blended at the nanometer level. The PDMS generated in the amorphous region of PE did not affect its crystallinity. Dynamic viscoelastic analyses and tensile tests were used to measure the mechanical properties of the composites including storage and Young's modulus, fracture stress, and strain. These properties were found to depend on the composition of the composite. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
Heat‐sealing properties are necessary for packaging materials. Soy protein isolate/polyvinyl alcohol (SPI/PVA) blend film is a biodegradable potential packaging material. We analyzed the effects of PVA content (0–20%), glycerol content (1–3%), and sealing temperature (180–230°C) on the heat‐sealing properties of SPI/PVA blend film. Results showed that SPI/PVA film obtained the desired sealing properties when the PVA content exceeded 15%. The sealing strength increased with the PVA content, reaching a maximum upon blending with 20% PVA and 1% glycerol at 220°C. The temperature at sealing strength was approximately twice that at 180°C. However, glycerol migrated to the surface and hindered the entanglement of macromolecular chains in the sealing interface, thereby resulting in reduction of seal strength. Glycerol vaporization at 204°C led to aesthetically unacceptable blistering in the sealing area. Therefore, the optimum sealing temperature of the blended film was ~200°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40308.  相似文献   

14.
In this study, bacterial cellulose (BC) hydrogels were cultured from a kombucha SCOBY starter. The scanning electron microscopy (SEM) results indicated that the dried BC exhibited an interpenetrating fibrous mat. The BC films harvested for 5, 10, and 15 days were 15–19, 14.4–24, and 30–31 μm thick, respectively. Then, BC/graphene oxide (GO) composite films were prepared via the exhaust dyeing method. GO sheets penetrated the BC matrix, resulting in the formation of a BC/GO composite, as revealed by the SEM analysis results. The mechanical properties of the composite films were investigated. Compared with virgin BC, the tensile strength of the composite films was higher, while the %E at break was lower, resulting in a significant increase in the Young's modulus. The X-ray diffraction results indicated that an increase in the dyeing time (0.5–2 h) gradually induced cellulose crystalline conformation, which in turn affected the swelling ability, mechanical properties, and electrical properties of the BC/GO composite films. After the reduction of GO to reduced GO (rGO), flexible conductive BC/rGO films were obtained, as confirmed by their resistivity values. Thus, flexible conductive composite films with excellent mechanical properties were successfully fabricated.  相似文献   

15.
Sorghum wax, sorbitol, glycerin, and soy protein isolate (SPI) composite films were prepared. Effects of sorghum wax, sorbitol, and glycerin concentrations on various films were evaluated using response surface methodology. All independent variables significantly (P<0.05) affected film water vapor permeability (WVP), tensile strength (TS), elongation at break (E), total color difference, and total soluble matter (TSM). Increasing the sorghum wax concentration decreased WVP and E. As sorbitol content increased in the composite films, WVP and TS increased. Sorbitol had a critical point of 2–5 g/5 g SPI for low values of TSM. The addition of sorbitol contributed more to the properties of the film than did glycerin.  相似文献   

16.
Multifunctional transparent composite films with high dielectric permittivity (high‐k), breakdown strength, and mechanical properties are urgently required by cutting‐edge fields. Herein, novel multifunctional films were facilely prepared through building unique cross‐linked structure based on epoxy resin (EP) and polyacrylonitrile (PAN)‐lithium trifluoromethane sulfonate (LiTf) complex. Compared with high‐k materials reported previously, EP/(PAN‐LiTf) films simultaneously show very high transparency, good flexibility, high tensile, and breakdown strengths. For 0.22EP/(PAN‐LiTf) film with 22 wt % EP, its average transmittance and elongation at break are as high as 91% (600–800 nm) and 12.7%, respectively; moreover, its dielectric permittivity, AC breakdown strength and the maximum energy density are severally about 4.9, 1.8, and 15.2 times of those of EP resin, completely overcoming the sticky problems in conductor/polymer composites. The origin behind these attractive properties is intensively discussed, and believed to be attributed to the unique structure of EP/(PAN‐LiTf) films. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45218.  相似文献   

17.
Fibrous cellulose and maleated polyethylene (FC–MPE) composites were prepared under melt mixing by maleation of polyethylene (PE) to obtain maleic anhydride (MA) grafted PE (MPE) and successive compounding of the resultant MPE with fibrous cellulose (FC). When increasing the content of added MA to 2 wt %, the grafting efficiency of MA decreases gradually to 84% and the grafted MA chains become longer. Scanning electron microscopy (SEM) reveals strong adhesion of MPE to FC in the FC–MPE composite, which is probably due to the increased compatibility between MPE and FC, in contrast to no adhesion of unmaleated PE (UPE) to FC in the FC–UPE composite. This difference in interfacial structure between the FC–MPE and FC–UPE composites results in quite different mechanical properties for them. With an increase in the FC content to 60 wt %, the tensile strength of the FC–MPE composite increases significantly and reaches 125% that of pure PE. Furthermore, the larger Young's modulus, larger bending elastic modulus, and smaller elongation of the FC–MPE composite strongly indicate effective transfer of the high tensile strength and elasticity of FC to the MPE matrix through the strong adhesion between FC and MPE. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1971–1980, 2002; DOI 10.1002/app.10428  相似文献   

18.
Novel biodegradable films were prepared from soy protein isolate (SPI), poly(vinyl alcohol) (PVA), glycerol, and 1,2,3‐propanetriol diglycidyl ether (PTGE). The mechanical, hydrophilic, and compatible properties of the films were investigated. The influence of PTGE as a crosslinker on the properties of the SPI/PVA/PTGE films was examined with Fourier transform infrared spectroscopy, X‐ray diffraction (XRD), thermogravimetric analysis, mechanical analysis, contact angle measurements, and scanning electron microscopy. XRD and contact angle examination confirmed that the addition of PTGE altered the film microstructure to a crystalline one. The mechanical properties and water resistance of the SPI/PVA/PTGE films increased notably compared with those of the unmodified SPI films. All results indicate that the networks were formed between SPI and PTGE and played an important role in forming a homogeneous structure in the obtained films. The novel biodegradable films provide a convenient and promising way for preparing environmentally friendly film materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42578.  相似文献   

19.
To improve the mechanical and water vapor barrier properties of soy protein films, the transparent films were prepared by blending 5 wt % soy protein isolate (SPI) alkaline water solution with 2 wt % carboxymethylated konjac glucomannan (CMKGM) aqueous solution and drying at 30 °C. The structure and properties of the blend films were studied by infrared spectroscopy, wide‐angle X‐ray diffraction spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential thermal analysis, and measurements of mechanical properties and water vapor transmission. The results demonstrated a strong interaction and good miscibility between SPI and CMKGM due to intermolecular hydrogen bonding. The thermostability and mechanical and water vapor barrier properties of blend films were greatly enhanced due to the strong intermolecular hydrogen bonding between SPI and CMKGM. The tensile strength and breaking elongation of blend films increased with the increase of CMKGM content: the maximum values achieved were 54.6 MPa and 37%, respectively, when the CMKGM content was 70 wt %. The water vapor transmission of blend films decreased with the increase of CMKGM content: the lowest value achieved was 74.8 mg · cm?2 · d?1 when the CMKGM content was 70 wt %. The SPI–CMKGM blend films provide promising applications to fresh food packaging. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1095–1099, 2003  相似文献   

20.
In this study, nano-SiO2/soy protein isolate composite film was prepared by casting method. The effects of (adding 0%, 1%, 3%, 5%, 7%, and 9% w/w) nano-SiO2 on the properties of the resulting blend films were investigated. Results showed that the addition of 5% nano-SiO2 exhibited good barrier properties. The mechanical properties including tensile strength and elongation at break of the film with 7% nano-SiO2 is increased by 82.6% and 31.49% correspondingly. Differential scanning calorimetry indicated that the melting temperature of the composite film is increased by 56.6°C compared with the pure film. The wall material modified by nano-SiO2 (adding 1%, 3%, 5%, 7%, and 9% w/w) was used for encapsulating walnut oil by spray drying. After accelerating oxidation test at 63°C for 12 days, we found that the encapsulation efficiency value of walnut oil microcapsules with 0%, 1%, 3%, 5%, 7%, and 9% nano-SiO2 decreased by 64.23%, 48%, 21%, 22%, 21.00%, and 31% respectively. The results suggested that the stability of the core material was improved by adding nano-SiO2 to the wall material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号