首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The objective of the research is to obtain a more complete understanding of how aging affects the viscoelastic properties of polymer solutions to be used as starting materials for gel spinning of polymer fibers. Specifically, poly(acrylonitrile‐co‐methacrylic acid) solutions were prepared and characterized using rheological measurements and nuclear magnetic resonance spectroscopy. The results indicate that elastic character increased with increasing polymer concentration and that gelation of these solutions continued up to aging times of several weeks. Additionally, comparing the results from the two characterization methods show that while gelation continues to occur, the viscoelastic properties decrease after a critical time point suggesting that a chemical change occurs in the solutions at long times. However, these changes impact the solution dynamics minimally as the effective network properties were similar at the aging times studied here, but considerations for long‐term storage of polymer solutions for gel spinning are warranted. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39821.  相似文献   

3.
The colloidal microstructure of concentrated suspensions containing anionic comb‐polymer‐stabilized magnesium oxide (MgO) particles in water was analyzed by shear rheometry for indications of changes in particle microstructure based on particle size and comb‐polymer usage. As the suspensions were sheared at different rates, jamming in the sheared MgO suspensions was observed as shear stress overshoots. The shear‐induced evolution of the suspension's microstructure was strongly related to the perceived interactions between neighboring MgO particles in the suspension. In the jammed state, interactions are believed to be enhanced by the formation of entanglements between opposing comb‐polymer side‐chains. Steric repulsion between side‐chains was lessened for large particles on account of their diameters, which further enabled side‐chain entanglement during close particle contact under shear. Suspensions with relatively wide particle size distributions (0.5–400 μm) were theorized to form hydrocluster aggregates, while suspensions with narrower particle size distributions (0.5–40 μm) most likely resulted in networked microstructures under the influence of the chain entanglements from the adsorbed comb‐polymer. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40429.  相似文献   

4.
In this study, antisedimentation, dielectric, electrorheological (ER) and creep–recovery properties of needle‐like TiO2/polyrhodanine (PRh) nanocomposite were investigated. Antisedimentation ratio of needle‐like TiO2/PRh was determined to be 45% after 30 days in silicone oil (SO). Polarizability and relaxation time of needle‐like TiO2/PRh/SO system were determined to be 0.18 and 2.9 × 10?5 s, respectively by the dielectric spectroscopy which was further used to evaluate the ER performance of the dispersion, and the data obtained were in good agreement with the overall ER results. ER properties of needle‐like TiO2/PRh/SO system were determined by taking the effects of shear rate, shear stress, electric field strength, and temperature into account using a torque electrorheometer. Non‐Newtonian shear thinning behaviors were observed for the samples. Vibration damping capabilities of the dispersions were investigated by measuring their elastic and viscous moduli as functions of frequency, time, and electric field strengths. Enhanced and reversible viscoelastic deformations were recorded for needle‐like TiO2/SO system from creep–recovery tests with 88% recovery under E = 3.5 kV mm?1 condition; thus, the system was classified as a smart one and suitable for potential vibration damping applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43240.  相似文献   

5.
Multiwall carbon nanotubes (MWCNTs) with liquid‐like behavior at room temperature were prepared with sulfonic acid terminated organosilanes as corona and tertiary amine as canopy. The liquid‐like MWCNT derivative had low viscosity at room temperature (3.89 Pa s at 20°C) and exhibited non‐Newtonian shear‐thinning behavior. The weight fraction of MWCNT in the derivative was 16.72%. The MWCNT derivative showed very good dispersion in organic solvents, such as ethanol and acetone. The liquid‐like MWCNT derivative was incorporated into epoxy matrix to investigate the mechanical performance of the nanocomposites and the distribution of MWCNTs in the matrix. When the liquid‐like MWCNT derivative content was up to 1 wt %, the flexural strength and impact toughness of composites were 12.1 and 124% higher than the pure epoxy matrix, respectively. Transmission electron microscope (TEM) confirmed the very good dispersion of the liquid‐like MWCNT derivative in epoxy matrix. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2217–2224, 2013  相似文献   

6.
A new series of amphiphilic graft‐copolymers, composed of poly(vinyl chloride) (PVC) backbones and poly(ethylene oxide) side chains, was synthesized by chemical modification of PVC. The synthesis was based on the reaction between chlorine in PVC (polymerization degree 700) and sodium salt of polyethylene glycol (PEG). PEGs with molecular weights of 200 and 600 were used. The graft polymers were characterized by IR and gel permeation chromatography and the molecular parameters such as the average numbers of grafting chains on the PVC backbones were calculated as well as the grafting percent. The molecular weights of PEG were found to influence the rate of the grafting reaction and the final degree of conversion. The maximum grafting percentage of the resulted polymers after the purification was ca. 34%, regardless of the molecular weight of PEG. No gel was observed in the PVC‐g‐PEOs, in spite of the average numbers of grafting chains up to 32. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 475–479, 2000  相似文献   

7.
Melt rheological properties of PBT/SEBS and PBT/SEBS/SEBS‐g‐MA blends at SEBS volume fraction (Φd) = 0.00–0.38 were studied at 240°C, 250°C and 260°C using a capillary rheometer. The compatibilizer SEBS‐g‐MA addition resulted in significant reduction in the dynamic interfacial tension which in turn led to increased phase adhesion. The power law exponent n decreased with increasing Φd and increasing temperature for both the compatiblized and uncompatiblized blends. The consistency index of PBT/SEBS increased with increasing Φd but were smaller than those of PBT/SEBS/SEBS‐g‐MA blends. Melt elasticity such as die swell and first normal stress difference increased with Φd. Variations of first normal stress coefficient function (ψ1), recoverable shear strain (γR), relaxation time (λ), and shear compliance (Jc) values versus shear rate were analyzed. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41402.  相似文献   

8.
The operating windows of the solution casting of two polymeric liquids were evaluated experimentally. The experimental setup and procedure were the same as used previously for the casting of Newtonian fluids (Journal of Applied Polymer Science 2013, 129, 507–516). Aqueous carboxymethylcellulose/glycerol solutions exhibited pure shear‐thinning behavior at low polymer concentrations but became viscoelastic at high polymer concentrations, whereas polyacrylamide/glycerol solutions showed viscoelastic behavior over a wide range of concentrations. The shear‐thinning behavior, in conjunction with a low level of elasticity, of the casting solution was found to be useful in expanding the stable operating windows. However, an opposite effect on the operating windows was found for highly elastic solutions. The non‐Newtonian effect on the maximum stable casting speed was prominent only when the capillary number exceeded unity. Defects outside of the operating window were mostly similar to those observed in Newtonian solution casting. For highly concentrated solutions, a new rough surface defect was observed. This defect could be attributed to polymer chain entanglement, alignment, or breakup. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41411.  相似文献   

9.
The conventional partially hydrolyzed polyacrylamide (HPAM) is greatly restricted by its single linear molecular structure in oil reservoirs with severe reservoir conditions such as high temperature and high salt. In this article, the chitosan (CS) grafted imidazoline monomer copolymer (CS-g-AM/AA/NIDA) was prepared from N-maleyl CS (N-MCS), acrylamide (AM), acrylic acid (AA), 1-(2-N-acryloylaminoethyl)-2-oleoyl imidazoline (NIDA) by free radical copolymerization. The structure was determined by means of Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, scanning electron microscope, thermal gravimetric analysis, and so forth, which confirmed the successful preparation of the copolymer with good thermal stability. Under the same conditions, compared with HPAM and copolymer CS-g-AM/AA, CS-g-AM/AA/NIDA greatly increased the viscosity of the aqueous solution and exhibited excellent shear stability (viscosity retention rate 15.62, 4.91, and 11.54% at 510 s−1), temperature resistance (the viscosity retention rate reached 50.89, 24.50, and 36.59% at 120°C) and salt resistance (14,000 mg/L NaCl: viscosity retention rate up to 17.27, 8.26, and 14.60%). In addition, core flooding experiments showed that oil recovery could be enhanced by up to 8.08% by CS-g-AM/AA/NIDA. As a natural polymer material, CS has hardly been reported for polymer flooding, and it is expected to replace general polymers in tertiary oil recovery.  相似文献   

10.
For the preparation of PEG 400 in paraffin oil non‐aqueous biocompatible emulsions, the stabilization efficiency was compared for two well‐defined poly(butadiene)‐block‐poly(2‐vinylpyridine) (PBut‐block‐P2VP) block copolymers, with similar molecular weights but different compositions. The PBut128block‐P2VP50 and PBut189block‐P2VP37 samples, designated as copolymer A and B, respectively, are self‐organized in paraffin oil as micelles with a P2VP core and a PBut corona. The PEG 400/paraffin oil emulsion characteristics were determined as a function of the copolymers concentrations and phase ratios. Higher static and shear stabilities were obtained for emulsions stabilized by copolymer B than for those obtained in the presence of copolymer A . A further difference concerns the droplet size, relative viscosity, and loss modulus values obtained at a given dispersed phase volume fraction. At constant copolymer concentrations, it appeared that copolymer B , with a longer PBut sequence, is a more efficient emulsifier and stabilizer than copolymer A . © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41390.  相似文献   

11.
To improve the flowability of waxy crude oil containing a high concentration of asphaltenes (AS), novel comb‐type copolymers of poly(maleic acid polyethylene glycol ester‐co‐α‐octadecene) (PMAC) and poly(maleic acid aniline amide‐co‐α‐octadecene) (AMAC) with various grafting ratios (Rg) of PEG/aniline to maleic anhydride are synthesized. Model oils containing wax mixtures and AS are prepared to explore the effect of asphaltene concentration and the copolymers on the yield stress. The influence of the copolymers on the wax appearance temperature (WAT) of Liaohe high waxy oil is examined by rheological and microscopic methods. Experimental flow curves of shear stress as a function of shear rate are fitted following the Casson model to interpret the rheological properties of gelled waxy crude oil in the presence of AMACs, PMACs, and MAC. Compared with MAC, PMACs, and AMACs are more efficient in reducing the yield stress of both model oil and crude oil, which indicates a better flowability. It is found that PMAC1.0 and AMAC1.0 with a medium Rg can balance the interaction of copolymers with waxes and AS and reduce the yield stress much more than others. Between them, AMAC1.0 that possesses aromatic pendants is better than PMAC1.0, which only has polar pendants. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41660.  相似文献   

12.
Hydrophobically modified polyacrylamide (HMPAM) is synthesized by a free radical micellar polymerization method with low amounts of anionic long‐chain alkyl, sodium 9‐(and 10)‐acrylamidostearate (NaAAS), which is derived from a renewable resource material, oleic acid. In this progress, the molar ratio of Sodium dodecyl sulfate (SDS) to NaAAS is adjusted, so polymers with different lengths of the hydrophobic blocks (NH = 3 and NH = 6) are obtained. The copolymers are characterized by 1H NMR, and the polymer weight and polydispersity are determined by gel permeation chromatography. The solution behaviors of the copolymers are studied as functions of concentrations, pH, and added electrolytes by steady‐flow and oscillatory experiments. The viscosities of these HMPAMs increase enormously above the critical concentration (c*). The sample with longer hydrophobic blocks exhibits better thickening effect. The rheological behaviors of aqueous solutions of HMPAMs are also investigated at different pH and brine environments. Low pH or the presence of brine promotes the intramolecular associating of hydrophobes for the both copolymers in semidilute solutions. The introduction of ionizable carboxylic group on the long hydrophobic side chain significantly influences the aggregation behaviors of the copolymers, leading to unique solution behaviors of the poly(AAm/NaAAS) copolymers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40754.  相似文献   

13.
A series of block copolymers of acrylamide and N‐isopropylacrylamide (NIPAM) characterized by different ratios between the length of the two blocks have been prepared through atomic transfer radical polymerization in water at room temperature. The solution properties of the block copolymers were correlated to their chemical structure. The effect of the hydrophilic/hydrophobic balance on the critical micelle concentration (CMC) was investigated. The CMC increases at higher values for the solubility parameter, thus indicating a clear relationship between these two variables. In addition, the solution rheology (in water) of the block copolymers was studied to identify the effect of the chemical structure on the thermo‐responsiveness of the solutions. An increase in the length of the PNIPAM block leads to a more pronounced increase in the solution viscosity. This is discussed in the general frame of hydrophobic interactions strength. The prepared polymers are in principle suitable for applications in many fields, particularly in enhanced oil recovery. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39785.  相似文献   

14.
In this study, a kind of anionic polyacrylamide (P(AM‐AA‐AMPS)) was synthesized using acrylamide (AM), acrylic acid (AA), and 2‐acrylamido‐2‐methyl propane sulfonic acid (AMPS) under ultraviolet (UV) irradiation. The conditions of the polymerization reaction such as monomer mass ratio, solution pH value, EDTA concentration and urea concentration were investigated by using the single factor approach and an L16 (45) orthogonal array. The structure and morphologies of the copolymer were determined by nuclear magnetic resonance spectrometer (NMR), infrared spectrometer (IR) and scanning electron microscope (SEM). The results show P(AM‐AA‐AMPS) with the intrinsic viscosity of 1.5 × 103 mL g?1 was synthesized at optimal conditions: mass ratio, m(AM) : m(AA) : m(AMPS) of 70 : 10 : 10, pH value of 9.0, EDTA concentration of 0.10% and urea concentration of 0.20%. In addition, P(AM‐AA‐AMPS) had better flocculation efficiency than commercial PAM in sludge dewatering experiment; the minimum filter cake moisture content could be reduced to 65.1%. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Geometrical dependence of viscosity of polymethylmethacrylate (PMMA) and high density polyethylene (HDPE) are studied by means of a twin‐bore capillary rheometer based on power‐law model. Contrary geometrical dependences of shear viscosity are observed for PMMA between 210 and 255°C, but similar geometrical dependences are revealed for HDPE between 190 and 260°C. The fact that wall slip can not successfully explain the irregular geometrical dependence of PMMA viscosity is found in this work. Then, pressure effect and dependence of fraction of free volume (FFV) on both pressure and temperature are proposed to be responsible for the geometrical dependence of capillary viscosity of polymers. The dependence of shear viscosity on applied pressure is first investigated based on the Barus equation. By introducing a shift factor, shear viscosity curves of PMMA measured under different pressures can be shifted onto a set of parallel plots by correcting the pressure effect and the less shear‐thinning then disappears, especially at high pressure. Meanwhile, the FFV and combining strength among molecular chains are evaluated for both samples based on molecular dynamics simulation, which implies that the irregular geometrical dependence of PMMA viscosity can not be attributed to the wall slip behavior. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 39982.  相似文献   

16.
Novel nanoparticles, polymer‐particle coupling agents, and functionalized polymers are being developed to enhance the performance of particle‐reinforced polymer systems such as advanced rubber compounds for automobile tires. Understanding the complex rheological behavior of rubber is critical to providing insights into both processability and end‐use properties. One unique aspect of the rheology of filled elastomers is that the incorporation of particles introduces a hysteretic softening (Payne effect) at small dynamic strains. This study demonstrates that this nonlinear viscoelastic behavior needs to be considered when attempting to correlate steady shear response (Mooney viscosity) to oscillatory shear measurements from test equipment such as the Rubber Process Analyzer (RPA). While a wide array of unfilled gum elastomers show good correlation between Mooney viscosity and dynamic torque from the RPA at all of the strain amplitudes used, rubber compounds containing silica and carbon black particles only exhibit good agreement between the two measures of processability when the oscillatory strain amplitude is high enough to sufficiently break up the filler network. Other features of the filler network and its influence on nonlinear rheology are considered in this investigation, including the effects of polymer–filler interactions on filler flocculation and the use of Fourier transform rheometry to illustrate the “linear‐nonlinear dichotomy” of the Payne effect. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40818.  相似文献   

17.
We present an experimental study on the rheological properties of a commonly used epoxy resin system (EPIKOTE‐862 resin and EPIKURE‐W curing agent), exposed to a variety of fluids typical of aerospace operations (jet fuel, hydraulic fluids, deicing, detergents, etc.), for a period of up to 6 months, at room temperature for most conditions, and with no concurrent mechanical loading or prior degradation. The specimens were subjected to stress and frequency sweeps with a shear rheometer, while a limited set received also a temperature sweep in a range consistent with aircraft operations. Results indicate that the treated resin samples are linear viscoelastic under these testing conditions. The resin has reasonable chemical resistance to most contaminants of this study, with the exception of two commonly used detergents: an aircraft surface cleaning compound, Penair C5572, and a nonionic detergent, Methyl Ethyl Ketone (MEK). The durability change of the first compound appears triggered by high temperatures only, while the second compound causes a very drastic stiffness loss under several conditions. This drop of performance occurs within a 3‐months period, with no apparent color change or fracture that could prompt visual inspection and repair. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3961–3971, 2013  相似文献   

18.
Concretes and mortars possessing a low water‐to‐cement (w/c) ratio (<0.40) liquefied with comb‐shaped polycarboxylate (PCE) copolymers commonly exhibit a sticky, honey‐like consistency, and slow flow behavior. The stickiness is owed to high plastic viscosity of the suspension. In this study, different PCE comb polymers based on methacrylate ester, allyl, vinyl, and isoprenyl ether macromonomers were synthesized and analyzed. It was found that their hydrophilic–lipophilic balance (HLB) value, i.e., the balance between the hydrophilic and lipophilic parts in these PCE molecules determines their effect on the plastic viscosity of a concrete. PCE copolymers mainly composed of hydrophilic parts, i.e., such possessing high HLB values, impart low plastic viscosity. Allyl ether—maleic acid based PCEs exhibit especially high HLB values and thus impart low plastic viscosity. Higher viscosities were recorded for isoprenylether PCEs, while methacrylate‐ester and vinyl ether PCEs possess particularly low HLB values and hence produce a pronounced sticky concrete. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42529.  相似文献   

19.
In this research, styrene acrylonitrile copolymer as a novel additive is used to modify rheological, mechanical and thermal properties of the base bitumen 70 penetration grade. Styrene acrylonitrile copolymer combines the rigidity of polystyrene with the hardness and thermal resistance of polyacrylonitrile to enhance viscoelastic property of the bitumen. To investigate the performance of the proposed mixture, shear complex module, phase angle, penetration, softening point, and reversibility of prepared samples are measured at different additive content and compared with the base bitumen. The results show that softening point of the base and modified samples are 49–86°C, respectively. The rheological properties of the base bitumen and modified samples are measured by a dynamic shear rheometer (DSR). The phase angle as elasticity measure decreases from 55° to 35° in the modified bitumen compared to the base bitumen. Generally, the experimental results showed that styrene acrylonitrile copolymer makes bitumen to be more stable at high temperatures and more flexible at low temperatures. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41875.  相似文献   

20.
In this work, the shear and elongational rheologies have been investigated for a newly developed oil displacing agent, polymeric surfactant‐PSf. It was found that the PSf solutions exhibited Newtonian, shear‐thinning, and shear‐thickening behavior, respectively, depending on the polymer concentration and shear rate, and Cox–Merz rule was not applicable to these systems. The first normal stress difference (N1) versus shear rate plots for PSf were complicated, which varied with the composition of the solutions. The uniaxial elongation in capillary breakup experimental results indicated that Exponential model could be used to fit the experimental data of the PSf solutions at lower polymer concentrations. In addition, it was found that PSf was more effective in improving shear viscosity than partially hydrolyzed polyacrylamide, but not in the case of elongational viscosity. The experimental results indicated that the microstructural mechanisms are responsible for the rheological behavior of the polymers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40813.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号