首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atom transfer radical polymerization (ATRP) was employed to prepare graft copolymers having poly(MBr)‐alt‐poly(St) copolymer as backbone and poly(methyl methacrylate) (PMMA) as branches to obtain heat resistant graft copolymers. The macroinitiator was prepared by copolymerization of bromine functionalized maleimide (MBr) with styrene (St). The polymerization of MMA was initiated by poly(MBr)‐alt‐poly(St) carrying bromine groups as macroinitiator in the presence of copper bromide (CuBr) and bipyridine (bpy) at 110°C. Both macroinitiator and graft copolymers were characterized by 1H NMR, GPC, DSC, and TGA. The ATRP graft copolymerization was supported by an increase in the molecular weight (MW) of the graft copolymers as compared to that of the macroinitiator and also by their monomodal MW distribution. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

2.
Isotactic polypropylene graft copolymers, isotactic[polypropylene‐graft‐poly(methyl methacrylate)] (i‐PP‐g‐PMMA) and isotactic[polypropylene‐graft‐polystyrene] (i‐PP‐g‐PS), were prepared by atom‐transfer radical polymerization (ATRP) using a 2‐bromopropionic ester macro‐initiator from functional polypropylene‐containing hydroxyl groups. This kind of functionalized propylene can be obtained by copolymerization of propylene and borane monomer using isospecific MgCl2‐supported TiCl4 as catalyst. Both the graft density and the molecular weights of i‐PP‐based graft copolymers were controlled by changing the hydroxyl group contents of functionalized polypropylene and the amount of monomer used in the grafting reaction. The effect of i‐PP‐g‐PS graft copolymer on PP‐PS blends and that of i‐PP‐g‐PMMA graft copolymer on PP‐PMMA blends were studied by scanning electron microscopy. Copyright © 2006 Society of Chemical Industry  相似文献   

3.
The synthesis of novel copolymers consisting of a side‐group liquid‐crystalline backbone and poly (methyl methacrylate) grafts were realized by the use of atom transfer radical polymerization (ATRP). In the first stage, the bromine‐functional copolymers 6‐(4‐cyanobiphenyl‐4′‐oxy)hexyl acrylate and (2,5‐dioxo‐2,5‐dihydro‐1H‐pyrrole‐1‐yl)methyl 2‐bromopropanoate were synthesized by free‐radical polymerization. These copolymers were used as initiators in the ATRP of methyl methacrylate to yield graft copolymers. Both the macroinitiator and graft copolymers were characterized by 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis. The ATRP graft copolymerization was supported by an increase in the molecular weight of the graft copolymers compared to that of the macroinitiator and also by their monomodal molecular weight distribution. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Diblock copolymers of poly(L ‐lactide)‐block‐poly(methyl methacrylate) (PLLA‐b‐PMMA) were synthesized through a sequential two‐step strategy, which combines ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP), using a bifunctional initiator, 2,2,2‐trichloroethanol. The trichloro‐terminated poly(L ‐lactide) (PLLA‐Cl) with high molecular weight (Mn,GPC = 1–12 × 104 g/mol) was presynthesized through bulk ROP of L ‐lactide (L ‐LA), initiated by the hydroxyl group of the double‐headed initiator, with tin(II) octoate (Sn(Oct)2) as catalyst. The second segment of the block copolymer was synthesized by the ATRP of methyl methacrylate (MMA), with PLLA‐Cl as macroinitiator and CuCl/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as catalyst, and dimethyl sulfoxide (DMSO) was chosen as reaction medium due to the poor solubility of the macroinitiator in conventional solvents at the reaction temperature. The trichloroethoxyl terminal group of the macroinitiator was confirmed by Fourier transform infrared spectroscopy (FTIR) and 1H‐NMR spectroscopy. The comprehensive results from GPC, FTIR, 1H‐NMR analysis indicate that diblock copolymers PLLA‐b‐PMMA (Mn,GPC = 5–13 × 104 g/mol) with desired molecular composition were obtained by changing the molar ratio of monomer/initiator. DSC, XRD, and TG analyses establish that the crystallization of copolymers is inhibited with the introduction of PMMA segment, which will be beneficial to ameliorating the brittleness, and furthermore, to improving the thermal performance. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
The paper describes the synthesis of block copolymers of methyl methacrylate (MMA) and N‐aryl itaconimides using atom‐transfer radical polymerization (ATRP) via a poly(methyl methacrylate)–Cl/CuBr/bipyridine initiating system or a reverse ATRP AIBN/FeCl3·6H2O/PPh3 initiating system. Poly(methyl methacrylate) (PMMA) macroinitiator, ie with a chlorine chain‐end (PMMA‐Cl), having a predetermined molecular weight (Mn = 1.27 × 104 g mol?1) and narrow polydispersity index (PDI = 1.29) was prepared using AIBN/FeCl3·6H2O/PPh3, which was then used to polymerize N‐aryl itaconimides. Increase in molecular weight with little effect on polydispersity was observed on polymerization of N‐aryl itaconimides using the PMMA‐Cl/CuBr/Bpy initiating system. Only oligomeric blocks of N‐aryl itaconimides could be incorporated in the PMMA backbone. High molecular weight copolymer with a narrow PDI (1.43) could be prepared using tosyl chloride (TsCl) as an initiator and CuBr/bipyridine as catalyst when a mixture of MMA and N‐(p‐chlorophenyl) itaconimide in the molar ratio of 0.83:0.17 was used. Thermal characterization was performed using differential scanning calorimetry (DSC) and dynamic thermogravimetry. DSC traces of the block copolymers showed two shifts in base‐line in some of the block copolymers; the first transition corresponds to the glass transition temperature of PMMA and second transition corresponds to the glass transition temperature of poly(N‐aryl itaconimides). A copolymer obtained by taking a mixture of monomers ie MMA:N‐(p‐chlorophenyl) itaconimide in the molar ratio of 0.83:0.17 showed a single glass transition temperature. Copyright © 2005 Society of Chemical Industry  相似文献   

6.
Atom transfer radical polymerization (ATRP) of 1‐(butoxy)ethyl methacrylate (BEMA) was carried out using CuBr/2,2′‐bipyridyl complex as catalyst and 2‐bromo‐2‐methyl‐propionic acid ester as initiator. The number average molecular weight of the obtained polymers increased with monomer conversion, and molecular weight distributions were unimodal throughout the reaction and shifted toward higher molecular weights. Using poly(methyl methacrylate) (PMMA) with a bromine atom at the chain end, which was prepared by ATRP, as the macro‐initiator, a diblock copolymer PMMA‐block‐poly [1‐(butoxy)ethyl methacrylate] (PMMA‐b‐PBEMA) has been synthesized by means of ATRP of BEMA. The amphiphilic diblock copolymer PMMA‐block‐poly(methacrylic acid) can be further obtained very easily by hydrolysis of PMMA‐b‐PBEMA under mild acidic conditions. The molecular weight and the structure of the above‐mentioned polymers were characterized with gel permeation chromatography, infrared spectroscopy and nuclear magnetic resonance. Copyright © 2005 Society of Chemical Industry  相似文献   

7.
Well‐defined methyl methacrylate (MMA) and 2‐(trimethylsiloxy)ethyl methacrylate (Pro‐HEMA) copolymers were prepared by atom‐transfer radical polymerization(ATRP), using CuCl/2,2′‐bipyridine as catalytic system and p‐toluenesulfonyl chloride as initiator. ATRP process of MMA and Pro‐HEMA was monitored by 1H NMR, and the kinetic curves of the MMA/Pro‐HEMA copolymerization were plotted in terms of the 1H NMR data. At low content of Pro‐HEMA in the feed composition, the copolymerization can be well controlled with the molecular weight, polydispersity and the monomer distribution in the copolymer chain. With the increase of Pro‐HEMA content in the feed mixture, the composition of the final copolymer deviates from the composition of the feed mixture gradually, and gradient copolymers of MMA/Pro‐HEMA can be obtained. Through the hydrolysis process, well‐defined copolymers of MMA/HEMA were obtained from poly(MMA/Pro‐HEMA). Copyright © 2003 Society of Chemical Industry  相似文献   

8.
A series of copper‐based reverse atom transfer radical polymerizations (ATRP) were carried out for methyl methacrylate (MMA) at same conditions (in xylene, at 80°C) using N,N,N′,N′‐teramethylethylendiamine (TMEDA), N,N,N′,N′,N′‐pentamethyldiethylentriamine (PMDETA), 2‐2′‐bipyridine, and 4,4′‐Di(5‐nonyl)‐2,2′‐bipyridine as ligand, respectively. 2,2′‐azobis(isobutyronitrile) (AIBN) was used as initiator. In CuBr2/bpy system, the polymerization is uncontrolled, because of the poor solubility of CuBr2/bpy complex in organic phase. But in other three systems, the polymerizations represent controlled. Especially in CuBr2/dNbpy system, the number‐average molecular weight increases linearly with monomer conversion from 4280 up to 14,700. During the whole polymerization, the polydispersities are quite low (in the range 1.07–1.10). The different results obtained from the four systems are due to the differences of ligands. From the point of molecular structure of ligands, it is very important to analyze deeply the two relations between (1) ligand and complex and (2) complex and polymerization. The different results obtained were discussed based on the steric effect and valence bond theory. The results can help us deep to understand the mechanism of ATRP. The presence of the bromine atoms as end groups of the poly(methyl methacrylate) (PMMA) obtained was determined by 1H‐NMR spectroscopy. PMMA obtained could be used as macroinitiator to process chain‐extension reaction or block copolymerization reaction via a conventional ATRP process. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
Poly(methyl methacrylate)‐poly(L ‐lactic acid)‐poly(methyl methacrylate) tri‐block copolymer was prepared using atom transfer radical polymerization (ATRP). The structure and properties of the copolymer were analyzed using infrared spectroscopy, gel permeation chromatography, nuclear magnetic resonance (1H‐NMR, 13C‐NMR), thermogravimetry, and differential scanning calorimetry. The kinetic plot for the ATRP of methyl methacrylate using poly(L ‐lactic acid) (PLLA) as the initiator shows that the reaction time increases linearly with ln[M]0/[M]. The results indicate that it is possible to achieve grafted chains with well‐defined molecular weights, and block copolymers with narrowed molecular weight distributions. The thermal stability of PLLA is improved by copolymerization. A new wash‐extraction method for removing copper from the ATRP has also exhibits satisfactory results. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Well‐defined poly(dimethylsiloxane)‐block‐poly(methyl methacrylate)‐block‐poly(2,2,3,3,4,4,4‐heptafluorobutyl methacrylate) (PDMS‐b‐PMMA‐b‐PHFBMA) triblock copolymers were synthesized via atom transfer radical polymerization (ATRP). Surface microphase separation in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films was investigated. The microstructure of the block copolymers was investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Surface composition was studied by X‐ray photoelectron spectroscopy (XPS). The chemical composition at the surface was determined by the surface microphase separation in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films. The increase of the PHFBMA content could strengthen the microphase separation behavior in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films and reduce their surface tension. Comparison between the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymers and the PDMS‐b‐PHFBMA diblock copolymers showed that the introduction of the PMMA segments promote the fluorine segregation onto the surface and decrease the fluorine content in the copolymers with low surface energy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
A new graft copolymers poly(aryl ether sulfone)‐graft‐polystyrene (PSF‐g‐PS) and poly(aryl ether sulfone)‐graft‐[polystyrene‐block‐poly(methyl methacrylate)] (PSF‐g‐(PS‐b‐PMMA)) were successfully prepared via atom transfer radical polymerisation (ATRP) catalyzed by FeCl2/isophthalic acid in N,N‐dimethyl formamide. The products were characterized by GPC, DSC, IR, TGA and NMR. The characterization data indicated that the graft copolymerization was accomplished via conventional ATRP mechanism. The effect of chloride content of the macroinitiator on the graft copolymerization was investigated. Only one glass transition temperature (Tg) was detected by DSC for the graft copolymer PSF‐g‐PS and two glass transition temperatures were observed in the DSC curve of PSF‐g‐(PS‐b‐PMMA). The presence of PSF in PSF‐b‐PS or PSF‐g‐(PS‐b‐PMMA) was found to improve thermal stabilities. © 2002 Society of Chemical Industry  相似文献   

12.
The grafting of the methyl methacrylate (MMA) monomer onto natural rubber using potassium persulfate as an initiator was carried out by emulsion polymerization. The rubber macroradicals reacted with MMA to form graft copolymers. The morphology of grafted natural rubber (GNR) was determined by transmission electron microscopy and it was confirmed that the graft copolymerization was a surface‐controlled process. The effects of the initiator concentration, reaction temperature, monomer concentration, and reaction time on the monomer conversion and grafting efficiency were investigated. The grafting efficiency of the GNR was determined by a solvent‐extraction technique. The natural rubber‐g‐methyl methacrylate/poly(methyl methacrylate) (NR‐g‐MMA/PMMA) blends were prepared by a melt‐mixing system. The mechanical properties and the fracture behavior of GNR/PMMA blends were evaluated as a function of the graft copolymer composition and the blend ratio. The tensile strength, tear strength, and hardness increased with an increase in PMMA content. The tensile fracture surface examined by scanning electron microscopy disclosed that the graft copolymer acted as an interfacial agent and gave a good adhesion between the two phases of the compatibilized blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 428–439, 2001  相似文献   

13.
The graft polymerization of methyl methacrylate and butyl acrylate onto poly(vinyl chloride‐co‐vinyl acetate) with atom transfer radical polymerization (ATRP) was successfully carried out with copper(I) thiocyanate/N,N,N,N,N″‐pentamethyldiethylenetriamine and copper(I) chloride/2,2′‐bipyridine as catalysts in the solvent N,N‐dimethylformamide. For methyl methacrylate, a kinetic plot of ln([M]0/[M]) (where [M]0 is the initial monomer concentration and [M] is the monomer concentration) versus time for the graft polymerization was almost linear, and the molecular weight of the graft copolymer increased with increasing conversion, this being typical for ATRP. The formation of the graft polymer was confirmed with gel permeation chromatography, 1H‐NMR, and Fourier transform infrared spectroscopy. The glass‐transition temperature of the copolymer increased with the concentration of methyl methacrylate. The graft copolymer was hydrolyzed, and its swelling capacity was measured. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 183–189, 2005  相似文献   

14.
This article reports on a facile route for the preparation of methyl acrylate and methyl methacrylate graft copolymers via a combination of catalytic olefin copolymerization and atom transfer radical polymerization (ATRP). The chemistry first involved a transforming process from ethylene/allylbenzene copolymers to a polyolefin multifunctional macroinitiator with pendant sulfonyl chloride groups. The key to the success of the graft copolymerization was ascribed to a fast exchange rate between the dormant species and active radical species by optimization of the various experimental parameters. Polyolefin‐g‐poly(methyl methacrylate) and polyolefin‐g‐poly(methyl acrylate) graft copolymers with controlled architecture and various graft lengths were, thus, successfully prepared under dilute ATRP conditions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
N‐cyclohexylmaleimide (CHMI) and styrene (St) were used to copolymerize with methyl methacrylate (MMA) to synthesize heat‐resistant poly(methyl methacrylate) (PMMA) by a solution copolymerization method and a suspension copolymerization method. Residual CHMI concentrations in the copolymers were analyzed by gas chromatography. Effects of styrene on residual CHMI concentration, glass transition temperature (Tg), molecular weight, and molecular weight distribution were studied. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1335–1339, 1999  相似文献   

16.
The new series of copolymers were obtained based on free radical solution copolymerization by mixing self‐made methyl acrylic acid sucrose ester (MASE) and methyl acrylic acid (MAA) with different ratios. Copolymerization behavior and properties of the new copolymers was investigated with the reaction time, temperature, monomer ratios and characterized by Fourier transform infrared spectra (FT‐IR), carbon nuclear magnetic resonance (13C NMR), and intrinsic viscosity. The results indicated that sucrose was successfully grafted onto poly (methyl acrylic acid). Further, it was demonstrated that low temperature benefited the esterification of MASE. Importantly, the copolymers were founded to have good compatibility with polymethyl methacrylate (PMMA), polytetrafluoroethylene (PTFE), and polyethylene (PE). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43627.  相似文献   

17.
Combination of cationic, redox free radical, and thermal free radical polymerizations was performed to obtain linear and star polytetramethylene oxide (poly‐THF)‐polymethyl methacrylate (PMMA)/polystyrene (PSt) multiblock copolymers. Cationic polymerization of THF was initiated by the mixture of AgSbF6 and bis(4,4′ bromo‐methyl benzoyl) peroxide (BBP) or bis (3,5,3′,5′ dibromomethyl benzoyl) peroxide (BDBP) at 20°C to obtain linear and star poly‐THF initiators with Mw varying from 7,500 to 59,000 Da. Poly‐THF samples with hydroxyl ends were used in the methyl methacrylate (MMA) polymerization in the presence of Ce(IV) salt at 40°C to obtain poly(THF‐b‐MMA) block copolymers containing the peroxide group in the middle. Poly(MMA‐b‐THF) linear and star block copolymers having the peroxide group in the chain were used in the polymerization of methyl methacrylate (MMA) and styrene (St) at 80°C to obtain PMMA‐b‐PTHF‐b‐PMMA and PMMA‐b‐PTHF‐b‐PSt linear and star multiblock copolymers. Polymers obtained were characterizated by GPC, FT‐IR, DSC, TGA, 1H‐NMR, and 13C‐NMR techniques and the fractional precipitation method. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 219–226, 2004  相似文献   

18.
Photo‐induced atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was achieved in poly(ethylene glycol)‐400 with nanosized α‐Fe2O3 as photoinitiator. Well‐defined poly(methyl methacrylate) (PMMA) was synthesized in conjunction with ethyl 2‐bromoisobutyrate (EBiB) as ATRP initiator and FeCl3·6H2O/Triphenylphosphine (PPh3) as complex catalyst. The photo‐induced polymerization of MMA proceeded in a controlled/living fashion. The polymerization followed first‐order kinetics. The obtained PMMA had moderately controlled number‐average molecular weights in accordance with the theoretical number‐average molecular weights, as well as narrow molecular weight distributions (Mw/Mn). In addition, the polymerization could be well controlled by periodic light‐on–off processes. The resulting PMMA was characterized by 1H nuclear magnetic resonance and gel permeation chromatography. The brominated PMMA was used further as macroinitiator in the chain‐extension with MMA to verify the living nature of photo‐induced ATRP of MMA. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42389.  相似文献   

19.
Four‐arm star‐shaped polymers and copolymers were obtained by transition metal‐catalyzed atom‐transfer radical polymerization (ATRP). The polymers were characterized by FTIR and 1H‐NMR spectroscopy. Gel permeation chromatography results indicated the formation of polystyrene and polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA) arms with controlled molecular weights. In dilute solution, the linear polymers had higher inherent viscosities than star‐shaped ones. Thermogravimetric analysis showed a similar degradation mechanism for linear and star‐shaped polymers. Differential scanning calorimetry indicated the successful formation of diblock star‐shaped copolymers. Copyright © 2006 Society of Chemical Industry  相似文献   

20.
Poly(methyl methacrylate)‐block‐polyurethane‐block‐poly(methyl methacrylate) tri‐block copolymers have been synthesized successfully through atom transfer radical polymerization of methyl methacrylate using telechelic bromo‐terminated polyurethane/CuBr/N,N,N,N″,N″‐pentamethyldiethylenetriamine initiating system. As the time increases, the number‐average molecular weight increases linearly from 6400 to 37,000. This shows that the poly methyl methacrylate blocks were attached to polyurethane block. As the polymerization time increases, both conversion and molecular weight increased and the molecular weight increases linearly with increasing conversion. These results indicate that the formation of the tri‐block copolymers was through atom transfer radical polymerization mechanism. Proton nuclear magnetic resonance spectral results of the triblock copolymers show that the molar ratio between polyurethane and poly (methyl methacrylate) blocks is in the range of 1 : 16.3 to 1 : 449.4. Differential scanning calorimetry results show Tg of the soft segment at ?35°C and Tg of the hard segment at 75°C. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号