首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of non-intrusive optical devices, such as infrared pyrometers able to measure the temperature of surfaces, makes possible the evaluation of emissivity curve of the tested materials at different temperature values. In this paper the authors propose a methodology for the spectral emissivity measurement by means of a single color pyrometer providing a semi-empirical formula, obtained experimentally at CIRA’s laboratory. The semi-empirical formula allows to know the actual emissivity value of the sample’s surface for whatever emissivity value set up on the pyrometer. The agreement between the experimental emissivity and the emissivity predicted by semi-empirical formula was verified.  相似文献   

2.
The thermal dissipation of radiation is main heat shield mechanism for non-ablative thermal protection materials on hypersonic vehicles withstanding high temperature dynamic heating cycle during endo-atmospheric ascent, cruise and reentry. Therefore, it is necessary to know the thermal radiative properties of the material under the simulated high temperature dynamic heating conditions on the ground. The emissivity depends on the surface state and its temperature. A new simultaneous measurement technology of emissivity and varying surface temperature is proposed under high temperature dynamic heating conditions. This new technology solved synchronous measurement problems by utilizing spectral signal of Fourier transform infrared (FTIR) spectroscopy. The calibration of different temperature ranges, the background disturbances, the influences on temperature measurement by wavelength range and its corresponding fluctuations of measurement signal, were thoroughly investigated. The measured results of steel and graphite as reference materials proved the effectiveness of this simultaneous measurement technology and showed great potential in engineering applications under high temperature dynamic heating conditions.  相似文献   

3.
The development of an experimental mathematical model describing temperature state of the sample during high temperature spectral emissivity measurement is introduced. Dimensional analysis of the measurement process gives the physical dimensionless quantities and sensitivity analysis of the measurement process provides the large set of performed model experiments. Evaluated experimental mathematical models are presented including their accordance with model experiments. Established equations are generalization of sensitivity analysis of high temperature spectral emissivity measurement method and can be used for computation of spectral emissivity total uncertainty.  相似文献   

4.
We describe a dielectric relaxation technique, which allows one to obtain a very accurate comparison of the behavior of two different samples. The key feature is the simultaneous impedance measurement on two capacitors that can share a common center electrode, implying that the same voltage is applied to both samples and that only a single gain/phase analyzer is required. The capabilities of this technique have been examined by comparing the dynamics of protonated and deuterated 1-propanol samples using this dual-channel analyzer in the frequency range of 10(-2)-10(6) Hz and in the temperature range of 110-160 K, after calibrating the system using the same sample in both, channel 1 and channel 2. For many supercooled liquids, the high sensitivity of the dielectric relaxation behavior on temperature prevents a meaningful comparison of nearly identical dynamics on the basis of two separate measurements. Based on this dual-channel method, we observe that a deuterated 1-propanol sample displays small but systematic deviations from the relaxation spectra of its protonated counterpart, which would not be observable in separate dielectric measurements. Many other applications can be envisioned where simultaneous or differential impedance measurements are advantageous.  相似文献   

5.
Doubled-sided laser heated diamond anvil cell methods allow simultaneous in situ confocal Raman measurements of materials up to megabar pressures and high temperatures. This paper describes a virtual control and data acquisition system developed to automate setups for simultaneous Raman/laser heating experiments. The system enables reduction of experiment time by ~90% in comparison to manual operations, allowing measurements of high quality Raman spectra of even highly reactive or diffusive samples, such as hydrogen at extreme conditions using continuous wave laser heating. These types of measurements are very difficult and often impossible to obtain in a manual operation mode. Complete data archiving and accurate control of various experimental parameters (e.g., on-the-fly temperature determination and self-adjusting data collection time to avoid signal saturation) can be done, and open up possibilities of other types of experiments involving extreme conditions.  相似文献   

6.
孔林  王栋  金光  李宗轩 《光学精密工程》2012,20(9):2014-2020
为了准确测定空间相机主镜毛坯件的表面发射率以便定量分析相机热控效果,本文在分析热像仪测温原理的基础上,利用现有测量条件,提出一种利用两种已知发射率材料作为参考的发射率测量方法.根据测量试验,得到主镜表面发射率为0.565.为定量反映各因素对测量精度的影响,对测量公式进行了误差分析.分析结果表明,与被测件表面发射率接近的材料的热像仪测温误差及发射率标称误差对测量精度有较大影响,同时得到本次试验因热像仪测温误差及参考材料发射率标称误差带来的测量误差为±0.028.最后,结合相机热平衡试验的数据对测量结果进行了验证,结果表明测量得到的主反射镜的发射率基本反映了热平衡试验的主镜表面状态,证明本文的方法对主反射镜发射率的测量是适用有效的.  相似文献   

7.
研究了在-60~50℃条件下准确测量材料法向发射率的方法。基于发射率定义建立了材料法向发射率测量模型。为屏蔽环境杂散辐射与大气吸收的影响,利用真空液氮背景通道搭建了低温状态下材料发射率测量装置。测量了氧化铜与高发射率陶瓷两种样品的法向发射率随温度、波长的变化情况。结果表明:两种样品的法向光谱发射率均随波长增加而降低;随温度的升高,氧化铜样品法向积分发射率稳定为0.850±0.012,陶瓷样品的法向积分发射率降低了0.124。最后,实现了低温状态下红外光谱辐射的高精度采集,对低温状态下材料法向光谱发射率测量结果的不确定度进行了评定,得到的结果显示其相对扩展不确定度小于6.0%。  相似文献   

8.
鉴于对高精度高时空分辨率大气探测资料日益增长的科研和业务需求,我国正大力发展星载红外高光谱探测系统。星载红外高光谱干涉仪光机结构复杂,仪器状态会显著影响其定标精度。本文通过理论分析和仿真实验,分别讨论了内黑体发射率、低温黑体发射率、内黑体与环境温度差、非线性系数以及直流电压演算等误差敏感性因子影响辐射定标精度的特征。分析表明定标辐射偏差的绝对值与内黑体/低温黑体发射率呈线性关系,且与内黑体与环境温度差、非线性系数、直流电压呈正相关;提高内黑体发射率和低温黑体发射率到0.985以上、控制内黑体与环境温度差在0.6 K左右、控制干涉仪的非线性效应系数低于0.04,这些方案均是实现0.1 K辐射定标精度的必要条件;辐射定标参数对定标辐射的影响特征结合地面真空实验的定标参数估计,可以迭代得到已测得和未知的定标参数的最优估计,从而提高定标精度。本文的研究结果对于红外高光谱干涉仪的参数设计以及辐射定标误差来源的识别和订正有着十分重要的意义。  相似文献   

9.
分别采用彩色相机和多光谱相机构建辐射测温系统,利用黑体炉进行温度模型标定实验,并基于BP神经网络对标定数据进行训练得到测温模型。通过蜡烛火焰的温度测量实验,验证了测温模型的可靠性,且结果显示多光谱成像测温系统的测温精度高于彩色相机测温系统。针对常规辐射成像测温系统空间分辨率不足的问题,采用多光谱相机结合显微镜搭建了显微测温平台,对高温热台内的单石油焦颗粒燃烧过程进行记录,得到了石油焦颗粒表面的温度分布以及随时间的温度变化过程。  相似文献   

10.
Dual color thermography is a non-contact measurement temperature technique used mainly when the emissivity of surface is unknown; it is based on ratio of monochromatic emissive power calculated by means Planck’s radiation equation and allows measuring the temperature of gray body surface objects without being assigned their emissivity and without approximations.For real surfaces, the emissivity varies with the temperature of surface as well as the wavelength and the direction of radiation. In this case, the dual color thermometry is executed by equipping the IR camera of two narrow band pass filters, so as to consider the surface emissivity of a quite constant value. This allows calculating the ratio between the radiative fluxes of the two different emission wavelengths that is almost independent to the surface emissivity.One of the crucial factor in this technique is the choice of the two narrow filter wavelengths. In fact the measurement errors depends directly on the two wavelengths and the variation of spectral emissivity related to the wavelength chosen and it also depends inversely on distance between central value of filters.In this paper, the authors have developed and validated a mathematical model of experimental setup to measure object surface temperature by means IR thermo-camera. This mathematical model was used to quantify the temperature measurement error in the dual-color technique. A novel correlation to estimate temperature measurement error was provided.  相似文献   

11.
A method for measuring the thermal-radiation characteristics of materials, which uses the concept of a dynamic calorimeter with a solid absorber, is considered. A thin disk with a high thermal conductivity is heated by an external radiation source, and the difference in the rate of its temperature change is measured in the presence and in the absence of a sample. The method allows the simultaneous measurement of the reflection and radiation coefficients over a wide temperature range. The results of the measurements of the thermal-radiation characteristics of the reference materials under equilibrium conditions and in the dynamic heating mode are presented.  相似文献   

12.
An integration of multi-angle energy-dispersive x-ray diffraction and ultrasonic elastic wave velocity measurements in a Paris-Edinburgh cell enabled us to simultaneously investigate the structures and elastic wave velocities of amorphous materials at high pressure and high temperature conditions. We report the first simultaneous structure and elastic wave velocity measurement for SiO(2) glass at pressures up to 6.8 GPa at around 500°C. The first sharp diffraction peak (FSDP) in the structure factor S(Q) evidently shifted to higher Q with increasing pressure, reflecting the shrinking of intermediate-range order, while the Si-O bond distance was almost unchanged up to 6.8 GPa. In correlation with the shift of FSDP position, compressional wave velocity (Vp) and Poisson's ratio increased markedly with increasing pressure. In contrast, shear wave velocity (Vs) changed only at pressures below 4 GPa, and then remained unchanged at ~4.0-6.8 GPa. These observations indicate a strong correlation between the intermediate range order variations and Vp or Poisson's ratio, but a complicated behavior for Vs. The result demonstrates a new capability of simultaneous measurement of structures and elastic wave velocities at high pressure and high temperature conditions to provide direct link between microscopic structure and macroscopic elastic properties of amorphous materials.  相似文献   

13.
基于径向基函数网络多光谱辐射测温技术理论研究   总被引:2,自引:0,他引:2  
在多光谱辐射测温技术中常需要假设光谱发射率及波长之间的数学模型。文中介绍了一种基于神经网络的多光谱辐射测温数据处理方法,代替了假设发射率模型的方法。利用径向基函数网络,可由网络的输出直接得到目标的真温和光谱发射率,并分析了各种测试情形对测结果的影响。计算机仿真结构表明此方法是一种比较好的获知真温与发射率的方法.  相似文献   

14.
材料的光谱发射比既是辐射度学中的重要物理量,又是热辐射式测温仪表中没有解决处理好的一个关键性问题。本文简述了近年来国内外在这一领域内的工作情况,提出并讨论了利用激光实时测定材料的光谱发射比,以便更准确地测出待测物体温度的方法。  相似文献   

15.
A modified pulse-heating method is proposed to improve the accuracy of measurement of the hemispherical total emissivity, specific heat capacity, and electrical resistivity of electrically conductive materials at high temperatures. The proposed method is based on the analysis of a series of rapid resistive self-heating experiments on a sample heated at different temperature rates. The method is used to measure the three properties of the IG-110 grade of isotropic graphite at temperatures from 850 to 1800 K. The problem of the extrinsic heating-rate effect, which reduces the accuracy of the measurements, is successfully mitigated by compensating for the generally neglected experimental error associated with the electrical measurands (current and voltage). The results obtained by the proposed method can be validated by the linearity of measured quantities used in the property determinations. The results are in reasonably good agreement with previously published data, which demonstrate the suitability of the proposed method, in particular, to the resistivity and total emissivity measurements. An interesting result is the existence of a minimum in the emissivity of the isotropic graphite at around 1120 K, consistent with the electrical resistivity results.  相似文献   

16.
何茜  韩军  陈文建 《光学仪器》2013,35(2):74-78
根据红外隐身材料光谱发射率测试方法的要求,提出了一种基于半导体制冷器的近室温样品加热炉系统。在对加热炉系统特性进行分析的基础上,建立了基于模糊PID控制的系统仿真模型。经仿真及实验可知,在加热和制冷条件下,实际温度与设定温度之间的误差分别为±0.20℃和±1.00℃。结果表明,系统稳定性好,响应时间短,解决了近室温样品加热炉抗干扰能力弱、不易控制等问题。  相似文献   

17.
We describe the development and the capabilities of an advanced system for nanoscale electrical transport studies. This system consists of a low temperature four-probe scanning tunneling microscope (STM) and a high-resolution scanning electron microscope coupled to a molecular-beam epitaxy sample preparation chamber. The four STM probes can be manipulated independently with subnanometer precision, enabling atomic resolution STM imaging and four-point electrical transport study of surface electronic systems and nanostructured materials at temperatures down to 10 K. Additionally, an integrated energy analyzer allows for scanning Auger microscopy to probe chemical species of nanostructures. Some testing results are presented.  相似文献   

18.
We have developed an instrument for optically measuring carrier dynamics in thin-film materials with approximately 150 nm lateral resolution, approximately 250 fs temporal resolution and high sensitivity. This is accomplished by combining an ultrafast pump-probe laser spectroscopic technique with a near-field scanning optical microscope. A diffraction-limited pump and near-field probe configuration is used, with a novel detection system that allows for either two-colour or degenerate pump and probe photon energies, permitting greater measurement flexibility than that reported in earlier published work. The capabilities of this instrument are proven through near-field degenerate pump-probe studies of carrier dynamics in GaAs/AIGaAs single quantum well samples locally patterned by focused ion beam (FIB) implantation. We find that lateral carrier diffusion across the nanometre-scale FIB pattern plays a significant role in the decay of the excited carriers within approximately 1 microm of the implanted stripes, an effect which could not have been resolved with a far-field system.  相似文献   

19.
A fast fiber-optic multi-wavelength pyrometer was developed for the ultraviolet-visible-near infrared spectra from 200 nm to 1700 nm using a CCD detector and an InGaAs detector. The pyrometer system conveniently and quickly provides the sufficient choices of multiple measurement wavelengths using optical diffraction, which avoids the use of narrow-band filters. Flexible optical fibers are used to transmit the radiation so the pyrometer can be used for temperature measurements in harsh environments. The setup and calibrations (wavelength calibration, nonlinearity calibration, and radiation response calibration) of this pyrometer system were described. Development of the multi-wavelength pyrometer involved optimization of the bandwidth and temperature discrimination of the multiple spectra data. The analysis results showed that the wavelength intervals, Δλ(CCD) = 30 nm and Δλ(InGaAs) = 50 nm, are the suitable choices as a tradeoff between the simple emissivity model assumption and the multiple signal discrimination. The temperature discrimination was also quantificationally evaluated for various wavelengths and temperatures. The measurement performance of the fiber-optic multi-wavelength pyrometer was partially verified through measurements with a high-temperature blackbody and actual hot metals. This multi-wavelength pyrometer can be used for remote high-temperature measurements.  相似文献   

20.
Temperature measurement is essential for several forming processes at elevated temperatures. It serves to determine and control the workpiece temperature. Thermography as a non-contact-based technology offers the possibility to capture thermograms of complete workpieces without any time-offset. However, the application of thermography requires the knowledge of the fundamentals of radiation thermometry, in particular the emissivity. This paper presents the results of the application of thermography in incremental sheet forming (ISF) with Joule heating and radial–axial ring rolling as a bulk forming process. Using thermography for the determination of the temperature of the forming zone allows for a real-time closed loop control in ISF with Joule heating. Additionally, the results of the temperature measurement of the surface temperature of radial–axial rolled rings are presented, which can be used as a starting point to make a forecast of the rings’ dimensions in cold state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号