首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A highly ordered particle-in-bowl (PIB) nanostructure array is designed and fabricated to achieve large field enhancement for the surface-enhanced Raman scattering (SERS) application. This new type of PIB structure is composed of an Ag particle located at the bottom of an Au bowl, and the two are separated by a precisely controlled nanoscale dielectric layer. The fabrication of the PIB structure is based on the self-assembly of polystyrene spheres and atomic layer deposition (ALD), which allows good control of the metal particle size and gap distance, as well as large-scale ordering. Numerical simulation reveals a high enhancement of the local field at the nanogaps. The SERS performance of the PIB arrays, and the effects of the Ag particle size and the ALD dielectric layer thickness are characterized, results of which are in reasonable agreement with simulation. With Rhodmaine 6G as the probe molecule, the spatially averaged SERS enhancement factor is on the order of 3.8 × 10(7) and the local field enhancement from simulation can be up to 10(8) .  相似文献   

2.
Molecular imaging techniques based on surface‐enhanced Raman scattering (SERS) face a lack of reproducibility and reliability, thus hampering its practical application. Flower‐like gold nanoparticles have strong SERS enhancement performance due to having plenty of hot‐spots on their surfaces, and this enhancement is not dependent on the aggregation of the particles. These features make this kind of particle an ideal SERS substrate to improve the reproducibility in SERS imaging. Here, the SERS properties of individual flower‐like gold nanoparticles are systematically investigated. The measurements reveal that the enhancement of a single gold nanoparticle is independent of the polarization of the excitation laser with an enhancement factor as high as 108. After capping with Raman signal molecules and folic acid, the gold nanoflowers show strong Raman signal in the living cells, excellent targeting properties, and a high signal‐to‐noise ratio for SERS imaging.  相似文献   

3.
Near‐field plasmonic coupling and local field enhancement in metal nanoarchitectures, such as arrangements of nanoparticle clusters, have application in many technologies from medical diagnostics, solar cells, to sensors. Although nanoparticle‐based cluster assemblies have exhibited signal enhancements in surface‐enhanced Raman scattering (SERS) sensors, it is challenging to achieve high reproducibility in SERS response using low‐cost fabrication methods. Here an innovative method is developed for fabricating self‐organized clusters of metal nanoparticles on diblock copolymer thin films as SERS‐active structures. Monodisperse, colloidal gold nanoparticles are attached via a crosslinking reaction on self‐organized chemically functionalized poly(methyl methacrylate) domains on polystyrene‐block‐poly(methyl methacrylate) templates. Thereby nanoparticle clusters with sub‐10‐nanometer interparticle spacing are achieved. Varying the molar concentration of functional chemical groups and crosslinking agent during the assembly process is found to affect the agglomeration of Au nanoparticles into clusters. Samples with a high surface coverage of nanoparticle cluster assemblies yield relative enhancement factors on the order of 109 while simultaneously producing uniform signal enhancements in point‐to‐point measurements across each sample. High enhancement factors are associated with the narrow gap between nanoparticles assembled in clusters in full‐wave electromagnetic simulations. Reusability for small‐molecule detection is also demonstrated. Thus it is shown that the combination of high signal enhancement and reproducibility is achievable using a completely non‐lithographic fabrication process, thereby producing SERS substrates having high performance at low cost.  相似文献   

4.
A convenient nanoscale technique is reported for the fabrication of highly ordered hemispherical silver nanocap arrays templated by porous anodic alumina (PAA) membranes as robust and cost‐efficient surface‐enhanced Raman scattering (SERS) substrates. This geometry produces a high Raman signal due to its periodic hexagonal arrangements and control of the gap between the nanostructures in the sub‐10‐nm regime. The surface structure can be tuned further to optimize the enhancement factor according to optional PAA fabrication and silver deposition parameters. Finite‐difference time‐domain calculations indicate that the structure may possess excellent SERS characteristics due to the high density and abundance of hot spots.  相似文献   

5.
Plexitonic nanoparticles offer variable optical properties through tunable excitations, in addition to electric field enhancements that far exceed molecular resonators. This study demonstrates a way to design an ultrabright surface‐enhanced Raman spectroscopy (SERS) signal while simultaneously quenching the fluorescence background through silica encapsulation of the semiconductor–metal composite nanoparticles. Using a multistep approach, a J‐aggregate‐forming organic dye is assembled on the surface of gold nanoparticles using a cationic linker. Excitonic resonance of the J‐aggregate–metal system shows an enhanced SERS signal at an appropriate excitation wavelength. Further encapsulation of the decorated particles in silica shows a significant reduction in the fluorescence signal of the Raman spectra (5× reduction) and an increase in Raman scattering (7× enhancement) when compared to phospholipid encapsulation. This reduction in fluorescence is important for maximizing the useful SERS enhancement from the particle, which shows a signal increase on the order of 104 times greater than J‐aggregated dye in solution and 24 times greater than Oxonica S421 SERS tag. The silica layer also serves to promote colloidal stability. The combination of reduced fluorescence background, enhanced SERS intensity, and temporal stability makes these particles highly distinguishable with potential to enable high‐throughput applications such as SERS flow cytometry.  相似文献   

6.
Cu nanocrystals of various shapes are synthesized via a universal, eco‐friendly, and facile colloidal method on Al substrates using hexadecylamine (HDA) as a capping agent and glucose as a reductant. By tuning the concentration of the capping agent, hierarchical 3D Cu nanocrystals show pronounced surface‐enhanced Raman scattering (SERS) through the concentrated hot spots at the sharp tips and gaps due to the unique 3D structure and the resulting plasmonic couplings. Intriguingly, 3D sword‐shaped Cu crystals have the highest enhancement factor (EF) because of their relatively uniform size distribution and alignment. This work opens new pathways for efficiently realizing morphology control for Cu nanocrystals as highly efficient SERS platforms.  相似文献   

7.
The assembly of plasmonic metal nanoparticles into hot spot surface‐enhanced Raman scattering (SERS) nanocluster probes is a powerful, yet challenging approach for ultrasensitive biosensing. Scaffolding strategies based on self‐complementary peptides and proteins are of increasing interest for these assemblies, but the electronic and the photonic properties of such hybrid nanoclusters remain difficult to predict and optimize. Here, split‐green fluorescence protein (sGFP) fragments are used as molecular glue and the GFP chromophore is used as a Raman reporter to assemble a variety of gold nanoparticle (AuNP) clusters and explore their plasmonic properties by numerical modeling. It is shown that GFP seeding of plasmonic nanogaps in AuNP/GFP hybrid nanoclusters increases near‐field dipolar couplings between AuNPs and provides SERS enhancement factors above 108. Among the different nanoclusters studied, AuNP/GFP chains allow near‐infrared SERS detection of the GFP chromophore imidazolinone/exocyclic C?C vibrational mode with theoretical enhancement factors of 108–109. For larger AuNP/GFP assemblies, the presence of non‐GFP seeded nanogaps between tightly packed nanoparticles reduces near‐field enhancements at Raman active hot spots, indicating that excessive clustering can decrease SERS amplifications. This study provides rationales to optimize the controlled assembly of hot spot SERS nanoprobes for remote biosensing using Raman reporters that act as molecular glue between plasmonic nanoparticles.  相似文献   

8.
Plasmonic nanoparticles are commonly used as optical transducers in sensing applications. The optical signals resulting from the interaction of analytes and plamsonic nanoparticles are influenced by surrounding physical structures where the nanoparticles are located. This paper proposes inverse opal photonic crystal hydrogel as 3D structure to improve Raman signals from plasmonic staining. By hybridization of the plasmonic nanoparticles and photonic crystal, surface‐enhanced Raman spectroscopy (SERS) analysis of multiplexed protein is realized. It benefits the Raman analysis by providing high‐density “hot spots” in 3D and extra enhancement of local electromagnetic field at the band edge of PhC with periodic refractive index distribution. The strong interaction of light and the hybrid 3D nanostructure offers new insights into plasmonic nanoparticle applications and biosensor design.  相似文献   

9.
表面增强拉曼散射(Surface enhanced Raman scattering,SERS)自从被发现以来在单分子检测、生物医学体系、环境科学、纳米材料以及传感器等领域获得了广泛的应用,而其SERS增强因子、物质吸附能力等性能的好坏主要取决于SERS的基底材料及结构。相比于纳米粒子的SERS基底,石墨烯/纳米粒子复合材料的SERS基底由于石墨烯额外的化学增强作用、表面分子富集和荧光淬灭等功能而受到各国研究人员的重视。首先分析了石墨烯/纳米粒子复合材料的SERS增强机理,然后从材料制备和基底结构两个方面综述了石墨烯/纳米粒子复合材料在SERS上的研究现状,最后对其未来的发展方向进行了展望。  相似文献   

10.
A major challenge in plasmonic hot spot fabrication is to efficiently increase the hot spot volumes on single metal nanoparticles to generate stronger signals in plasmon‐enhanced applications. Here, the synthesis of designer nanoparticles, where plasmonic‐active Au nanodots are selectively deposited onto the edge/tip hot spot regions of Ag nanoparticles, is demonstrated using a two‐step seed‐mediated precision synthesis approach. Such a “hot spots over hot spots” strategy leads to an efficient enhancement of the plasmonic hot spot volumes on single Ag nanoparticles. Through cathodoluminescence hyperspectral imaging of these selective edge gold‐deposited Ag octahedron (SEGSO), the increase in the areas and emission intensities of hot spots on Ag octahedra are directly visualized after Au deposition. Single‐particle surface‐enhanced Raman scattering (SERS) measurements demonstrate 10‐fold and 3‐fold larger SERS enhancement factors of the SEGSO as compared to pure Ag octahedra and non‐selective gold‐deposited Ag octahedra (NSEGSO), respectively. The experimental results corroborate well with theoretical simulations, where the local electromagnetic field enhancement of our SEGSO particles is 15‐fold and 1.3‐fold stronger than pure Ag octahedra and facet‐deposited particles, respectively. The growth mechanisms of such designer nanoparticles are also discussed together with a demonstration of the versatility of this synthetic protocol.  相似文献   

11.
Metallic nanostructures attract much interest as an efficient media for surface-enhanced Raman scattering (SERS). Significant progress has been made on the synthesis of metal nanoparticles with various shapes, composition, and controlled plasmonic properties, all critical for an efficient SERS response. For practical applications, efficient strategies of assembling metal nanoparticles into organized nanostructures are paramount for the fabrication of reproducible, stable, and highly active SERS substrates. Recent progress in the synthesis of novel plasmonic nanoparticles, fabrication of highly ordered one-, two-, and three-dimensional SERS substrates, and some applications of corresponding SERS effects are discussed.  相似文献   

12.
M Sun  C Qian  W Wu  W Yu  Y Wang  H Mao 《Nanotechnology》2012,23(38):385303
This paper reports a novel highly ordered tripetaloid structure array (TPSA) which performs very well as an active surface-enhanced Raman scattering (SERS) substrate. The TPSA is easily fabricated by anisotropic etching of a self-assembly silica-nanoparticle bilayer and a subsequent metal deposition step, with notable uniformity and reproducibility. Electromagnetic simulation indicates that the narrow inter-gaps and edge protrusions in the TPSA act as hot spots. In addition, the peak electromagnetic field intensity in the inter-gaps changes slightly and periodically as the polarization of the incident light varies from 0°?to 360°. SERS experiments show that the SERS enhancement factor (EF) of a Au-film-covered TPSA is 12 times higher than that of regular Au-film-over-nanoparticles, and not sensitive to the polarization of the incident light. The spatially averaged EF of the TPSA is as high as 5.7?×?10(6), and the local EF of its hot spots is much higher.  相似文献   

13.
Common methods to prepare SERS (surface‐enhanced Raman scattering) probes rely on random conjugation of Raman dyes onto metal nanostructures, but most of the Raman dyes are not located at Raman‐intense electromagnetic hotspots thus not contributing to SERS enhancement substantially. Herein, a competitive reaction between transverse gold overgrowth and dye conjugation is described to achieve site selective conjugation of Raman dyes to the hotspots (ends) on gold nanorods (GNRs). The preferential overgrowth on the nanorod side surface creates a barrier to prevent the Raman dyes from binding to the side surface except the ends of the GNRs, where the highest SERS enhancement factors are expected. The SERS enhancement observed from this special structure is dozens of times larger than that from conjugates synthesized by conventional methods. This simple and powerful strategy to prepare SERS probes can be extended to different anisotropic metal nanostructures with electromagnetic hotspots and has immense potential in in‐depth SERS‐based biological imaging and single‐molecule detection.  相似文献   

14.
Surface‐enhanced Raman scattering (SERS) is one of the most promising methods to detect small molecules for point‐of‐care analysis as it is rapid, nondestructive, label‐free, and applicable for aqueous samples. Here, microgels containing highly concentrated yet evenly dispersed gold nanoparticles are designed to provide SERS substrates that simultaneously achieve contamination‐free metal surfaces and high signal enhancement and reproducibility. With capillary microfluidic devices, water‐in‐oil‐in‐water (W/O/W) double‐emulsion drops are prepared to contain gold nanoparticles and hydrogel precursors in innermost drop. Under hypertonic condition, water is selectively pumped out from the innermost drops. Therefore, gold nanoparticles are gently concentrated without forming aggregates, which are then captured by hydrogel matrix. The resulting microgels have a concentration of gold nanoparticles ≈30 times higher and show Raman intensity two orders of magnitude higher than those with no enrichment. In addition, even distribution of gold nanoparticles results in uniform Raman intensity, providing high signal reproducibility. Moreover, as the matrix of the microgel serves as a molecular filter, large adhesive proteins are rejected, which enables the direct detection of small molecules dissolved in the protein solution. It is believed that this advanced SERS platform is useful for in situ detection of toxic molecules in complex mixtures such as biological fluids, foods, and cosmetics.  相似文献   

15.
Plasmonic nanostructures separated by nanogaps enable strong electromagnetic‐field confinement on the nanoscale for enhancing light‐matter interactions, which are in great demand in many applications such as surface‐enhanced Raman scattering (SERS). A simple M‐shaped nanograting with narrow V‐shaped grooves is proposed. Both theoretical and experimental studies reveal that the electromagnetic field on the surface of the M grating can be pronouncedly enhanced over that of a grating without such grooves, due to field localization in the nanogaps formed by the narrow V grooves. A technique based on room‐temperature nanoimprinting lithography and anisotropic reactive‐ion etching is developed to fabricate this device, which is cost‐effective, reliable, and suitable for fabricating large‐area nanostructures. As a demonstration of the potential application of this device, the M grating is used as a SERS substrate for probing Rhodamine 6G molecules. Experimentally, an average SERS enhancement factor as high as 5×108 has been achieved, which verifies the greatly enhanced light–matter interaction on the surface of the M grating over that of traditional SERS surfaces.  相似文献   

16.
To meet the requirement of Raman probes (labels) for biocompatible applications, a synthetic approach has been developed to sandwich the Raman-probe (malachite green isothiocyanate, MGITC) molecules between the gold core and the silica shell in gold-SiO? composite nanoparticles. The gold-MGITC-SiO? sandwiched structure not only prevents the Raman probe from leaking out but also improves the solubility of the nanoparticles in organic solvents and in aqueous solutions even with high ionic strength. To amplify the Raman signal, three types of core, gold nanospheres, nanorods and nanostars, have been chosen as the substrates of the Raman probe. The effect of the core shape on the surface-enhanced Raman scattering (SERS) has been investigated. The colloidal nanostars showed the highest SERS enhancement factor while the nanospheres possessed the lowest SERS activity under excitation with 532 and 785 nm lasers. Three-dimensional finite-difference time domain (FDTD) simulation showed significant differences in the local electromagnetic field distributions surrounding the nanospheres, nanorods, and nanostars, which were induced by the localized surface plasmon resonance (LSPR). The electromagnetic field was enhanced remarkably around the two ends of the nanorods and around the sharp tips of the nanostars. This local electromagnetic enhancement made the dominant contribution to the SERS enhancement. Both the experiments and the simulation revealed the order nanostars > nanorods > nanospheres in terms of the enhancement factor. Finally, the biological application of the nanostar-MGITC-SiO? nanoparticles has been demonstrated in the monitoring of DNA hybridization. In short, the gold–MGITC-SiO? sandwiched nanoparticles can be used as a Raman probe that features high sensitivity, good water solubility and stability, low-background fluorescence, and the absence of photobleaching for future biological applications.  相似文献   

17.
Cui B  Clime L  Li K  Veres T 《Nanotechnology》2008,19(14):145302
This work demonstrates the fabrication of metallic nanoprism (triangular nanostructure) arrays using a low-cost and high-throughput process. In the method, the triangular structure is defined by the shadow of a pyramid during angle evaporation of a metal etching mask. The pyramids were created by nanoimprint lithography in polymethylmethacrylate (PMMA) using a mould having an inverse-pyramid-shaped hole array formed by KOH wet etching of silicon. Silver and gold nanoprism arrays with a period of 200?nm and an edge length of 100?nm have been fabricated and used as effective substrates for surface enhanced Raman spectroscopy (SERS) detection of rhodamine 6G (R6G) molecules. Numerical calculations confirmed the great enhancement of electric field near the sharp nanoprism corners, as well as the detrimental effect of the chromium adhesion layer on localized surface plasmon resonance. The current method can also be used to fabricate non-equilateral nanoprism and three-dimensional (3D) nanopyramid arrays, and it can be readily extended to other metals.  相似文献   

18.
Optimization of pore diameter, the placement of nanoparticles, and the transmission of surface-enhanced Raman scattering (SERS) substrates are found to be very critical for achieving high SERS activity in porous alumina-membrane-based substrates. SERS substrates with a pore diameter of 355 nm incorporating silver nanoparticles show very high SERS activity with enhancement factors of 10(10) .  相似文献   

19.
In this study, surface‐enhanced Raman spectroscopy (SERS)‐encoded magnetic nanoparticles (NPs) are prepared and utilized as a multifunctional tagging material for cancer‐cell targeting and separation. First, silver‐embedded magnetic NPs are prepared, composed of an 18‐nm magnetic core and a 16‐nm‐thick silica shell with silver NPs formed on the surface. After simple aromatic compounds are adsorbed on the silver‐embedded magnetic NPs, they are coated with silica to provide them with chemical and physical stability. The resulting silica‐encapsulated magnetic NPs (M‐SERS dots) produce strong SERS signals and have magnetic properties. In a model application as a tagging material, the M‐SERS dots are successfully utilized for targeting breast‐cancer cells (SKBR3) and floating leukemia cells (SP2/O). The targeted cancer cells can be easily separated from the untargeted cells using an external magnetic field. The separated targeted cancer cells exhibit a Raman signal originating from the M‐SERS dots. This system proves to be an efficient tool for separating targeted cells. Additionally, the magnetic‐field‐induced hot spots, which can provide a 1000‐times‐stronger SERS intensity due to aggregation of the NPs, are studied.  相似文献   

20.
Surface‐enhanced Raman spectroscopy is a powerful and sensitive analytical tool that has found application in chemical and biomolecule analysis and environmental monitoring. Since its discovery in the early 1970s, a variety of materials ranging from noble metals to nanostructured materials have been employed as surface enhanced Raman scattering (SERS) substrates. In recent years, 2D inorganic materials have found wide use in the development of SERS‐based chemical sensors owing to their unique thickness dependent physico‐chemical properties with enhanced chemical‐based charge‐transfer processes. Here, recent advances in the application of various 2D inorganic nanomaterials, including graphene, boron nitride, semiconducting metal oxides, and transition metal chalcogenides, in chemical detection via SERS are presented. The background of the SERS concept, including its basic theory and sensing mechanism, along with the salient features of different nanomaterials used as substrates in SERS, extending from monometallic nanoparticles to nanometal oxides, is comprehensively discussed. The importance of 2D inorganic nanomaterials in SERS enhancement, along with their application toward chemical detection, is explained in detail with suitable examples and illustrations. In conclusion, some guidelines are presented for the development of this promising field in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号