首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bottom fermenting yeasts in our collection were classified as Saccharomyces pastorianus on the basis of their DNA relatedness. The genomic organization of bottom fermenting yeast was analysed by Southern hybridization using eleven genes on chromosome IV, six genes on chromosome II and five genes on chromosome XV of S. cerevisiae as probes. Gene probes constructed from S. cerevisiae chromosomes II and IV hybridized strongly to the 820-kb chromosome and the 1500-kb chromosome of the bottom fermenting yeast, respectively. Five gene probes constructed from segments of chromosome XV hybridized strongly to the 1050-kb and the 1000-kb chromosomes. These chromosomes are thought to be S. cerevisiae-type chromosomes. In addition, these probes also hybridized weakly to the 1100-kb, 1350-kb, 850-kb and 700-kb chromosome. Gene probes constructed from segments including the left arm to TRP1 of chromosome IV and the right arm of chromosome II hybridized to the 1100-kb chromosome of S. pastorianus. Gene probes constructed using the right arm of chromosome IV and the left arm of chromosome II hybridized to the 1350-kb chromosome of S. pastorianus. These results suggested that the 1100-kb and 1350-kb chromosomes were generated by reciprocal translocation between chromosome II and IV in S. pastorianus. Three gene probes constructed using the right arm of chromosome XV hybridized weakly to the 850-kb chromosome, and two gene probes from the left arm hybridized weakly to the 700-kb chromosome. These results suggested that chromosome XV of S. cerevisiae was rearranged into the 850-kb and 700-kb chromosomes in S. pastorianus. These weak hybridization patterns were identical to those obtained with S. bayanus. Therefore, two types of chromosome co-exist independently in bottom fermenting yeast: one set which originated from S. bayanus and another set from S. cerevisiae. This result supports the hypothesis that S. pastorianus is a hybrid of S. cerevisiae and S. bayanus. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
The polymorphic extracellular glucoamylase-encoding genes STA1 (chr. IV), STA2 (chr. II) and STA3 (chr. XIV), from Saccharomyces cerevisiae var. diastaticus probably evolved by genomic rearrangement of DNA regions (S1, S2 and SGA1) present in S. cerevisiae, and subsequent translocation to unlinked regions of chromosomal regions. S1, encoding a homologue to the threonine/serine-rich domain of STA glucoamylases (GAI-III), mapped to the right arm of chromosome IX. S2, encoding the hydrophobic leader peptide of GAI-III, was also mapped on the right arm of chromosome IX, next to S1, close to DAL81. The SGA1 sporulation-specific, intracellular glucoamylase-encoding gene is located on the left arm of chromosome IX, 32 kb proximal of HIS5.  相似文献   

3.
4.
5.
Previous studies have revealed that chromosome VI of saké yeasts is much larger than that of the other strains of Saccharomyces cerevisiae. Southern analysis using segments of chromosome VI of a laboratory strain as probes suggested that the nucleotide sequence of a major portion of this chromosome is conserved, but considerable diversity was found in the distal parts in the other strains. Physical maps also indicated that differences in length of chromosome VI were mainly due to differences in its ends. NotI was found to generate 9 kb and/or 16 kb fragments from the left telomere of chromosome VI in most saké yeasts, but no fragment in the case of AB972. SfiI produced one or two 30–50 kb fragments from the right end of this chromosome in all saké yeasts tested, but produced a 20 kb fragment in the case of AB972. All S. cerevisiae strains not employed in saké brewing were the same as AB972 in these respects. S. paradoxus had one NotI site in chromosome VI, while S. bayanus had two, one of which is possibly common to both species. The SfiI site mentioned above was present in chromosome VI of all species, while that of S. bayanus and S. paradoxus each had a second site distinct from the other. Chromosome VI of S. pastorianus was not distinguishable from that of S. bayanus. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
The nucleotide sequences of alcohol acetyltransferase genes isolated from lager brewing yeast, Saccharomyces carlsbergensis have been determined. S. carlsbergensis has one ATF1 gene and another homologous gene, the Lg-ATF1 gene. There was a high degree of homology between the amino acid sequences deduced for the ATF1 protein and the Lg-ATF1 protein (75·7%), but the N-terminal region has a relatively low degree of homology. Southern analysis and contour-clamped homogeneous electric field analysis of Saccharomyces strains suggest that the ATF1 gene is located on chromosome XV in S. cerevisiae and that the Lg-ATF1 gene might originate from the ‘non-S. cerevisiae’ genome of S. carlsbergensis, which is similar to that of S. bayanus and S. pastorianus. The nucleotide sequence data reported in this paper will appear in the DDBJ, EMBL and GenBank data banks with the Accession Numbers D63449 (ATF1) and D63450 (Lg-ATF1).  相似文献   

7.
Approximately 3·9 kb of DNA, centromere proximal to the previously sequenced Y′ element at the right end of chromosome XV in Saccharomyces cerevisiae strain YP1, has been sequenced. A number of the known sub-telomeric repeat sequences were identified, including Y′, core X and STRs A, B. C and D. Several of these repeat elements contain potentially functional sequences. In addition, two other members of repeated gene families were identified. The first of these shows 61% and 60% DNA sequence identity to Enolases 1 and 2 respectively. The Enolase-like sequence appears to be species specific, with three copies being found in all strains of S. cerevisiae studied. The location of the three copies is the same for all strains. The second repeated sequence has homology with known open reading frames on chromosomes III, V and XI. There are five or six copies of this sequence in all S. cerevisiae and S. paradoxus strains studied and three in S. bayanus strains. The analysis of this region and comparison to sub-telomeric regions on other chromosomes gives some indication as to the potential functional and structural significance of sub-telomeric repeat sequences. In addition, these findings are consistent with the idea that sub-telomeric regions may be targets for unusual recombination events. The updated sequence has been deposited in the EMBL and GenBank databases under Accession Number M58718.  相似文献   

8.
A recessive mutation leading to complete loss of thiamine uptake in Saccharomyces cerevisiae was mapped on the left arm of chromosome VII, approximately 56cM centromere-distal to trp5. As the analysed locus is relatively distant from its centromere and from the markers used, its attachment to chromosome VII was confirmed by chromosome loss methods.  相似文献   

9.
The DNA sequence of a 6794 bp fragment located at about 100 kb from the right telomere of chromosome II from Saccharomyces cerevisiae has been determined. Sequence analysis reveals five open reading frames. One is the ARO4 gene encoding the 3-deoxy-D -arabinoheptulosonate 7-phosphate synthase. Another presents strong homology with the S5 ribosomal protein from bacteria. The open reading frame YBR1705 shows significant homology with dUTPase, suggesting for the first time the existence of such an enzyme in S. cerevisiae.  相似文献   

10.
The nucleotide sequences of five major regions from chromosome VII of Saccharomyces cerevisiae have been determined and analysed. These regions represent 203 kilobases corresponding to approximately one-fifth of the complete yeast chromosome VII. Two fragments originate from the left arm of this chromosome. The first one of about 15·8 kb starts approximately 75 kb from the left telomere and is bordered by the SKI8 chromosomal marker. The second fragment covers the 72·6 kb region between the chromosomal markers CYH2 and ALG2. On the right chromosomal arm three regions, a 70·6 kb region between the MSB2 and the KSS1 chromosomal markers and two smaller regions dominated by the KRE11 marker and another one in the vicinity of the SER2 marker were sequenced. We found a total of 114 open reading frames (ORFs), 13 of which were completely overlapping with larger ORFs running in the opposite direction. A total of 44 yeast genes, the physiological functions of which are known, could be precisely mapped on this chromosome. Of the remaining 57 ORFs, 26 shared sequence homologies with known genes, among which were 13 other S. cerevisiae genes and five genes from other organisms. No homology with any sequence in the databases could be found for 31 ORFs. Furthermore, five Ty elements were found, one of which may not be functional due to a frame shift in its Ty1B amino acid sequence. The five chromosomal regions harboured five potential ARS elements and one sigma element together with eight tRNA genes and two snRNAs, one of which is encoded by an intron of a protein-coding gene. © 1997 by John Wiley & Sons, Ltd.  相似文献   

11.
In Saccharomyces cerevisiae, most of the LYS structural genes have been identified except the genes encoding homocitrate synthase and α-aminoadipate aminotransferase. Expression of several LYS genes responds to an induction mechanism mediated by the product of LYS14 and an intermediate of the pathway, α-aminoadipate semialdehyde (αAASA) as an inducer. This activation is modulated by the presence of lysine in the growth medium leading to an apparent repression. Since the first enzyme of the pathway, homocitrate synthase, is feedback inhibited by lysine, it could be a major element in the control of αAASA supply. During the sequencing of chromosome IV of S. cerevisiae, the sequence of ORF D1298 showing a significant similarity with the nifV gene of Azotobacter vinelandii was reported. Disruption and overexpression of ORF D1298 demonstrate that this gene, named LYS20, encodes a homocitrate synthase. The disrupted segregants are able to grow on minimal medium and exhibit reduced but significant homocitrate synthase indicating that this activity is catalysed by at least two isoenzymes. We have also shown that the product of LYS20 is responsible for the greater part of the lysine production. The different isoforms are sensitive to inhibition by lysine but only the expression of LYS20 is strongly repressed by lysine. The N-terminal end of homocitrate synthase isoform coded by LYS20 contains no typical mitochondrial targeting sequence, suggesting that this enzyme is not located in the mitochondria.  相似文献   

12.
The nucleotide sequence of a 26·7 kb DNA segment from the left arm of Saccharomyces cerevisiae chromosome IV is presented. An analysis of this segment revealed 11 open reading frames (ORFs) longer than 300 bp and one split gene. These ORFs include the genes encoding the large subunit of RNA polymerase II, the biotin apo-protein ligase, an ADP-ribosylation factor (ARF 2), the ‘L35’-ribosomal protein, a rho GDP dissociation factor, and the sequence encoding the protein phosphatase 2A. Further sequence analysis revealed a short ORF encoding the ribosomal protein YL41B, an intron in a 5′ untranslated region and an extended homology with another cosmid (X83276) located on the same chromosome. The potential biological relevance of these findings is discussed. The sequence was submitted to the EMBL database under Accession Number X96876.  相似文献   

13.
The effects of the inoculum ratio of Williopsis saturnus var. saturnus NCYC22 and Saccharomyces cerevisiae var. bayanus EC-1118 at 1:200 and 1:800 on the chemical and volatile compositions of grape wine were studied in sequential fermentation. The grape juice was first inoculated with Williopsis (W.) saturnus for 9 d; thereafter, Saccharomyces (S.) cerevisiae was inoculated to continue the fermentation until d 19. The cell population of W. saturnus disappeared by d 13, with S. cerevisiae dominating until the end of the fermentation in both inoculum ratios. The changes in yeast count, pH, total soluble solids, sugars, organic acids, and amino acids were similar between the two inoculum ratios. A range of volatile compounds was formed, including alcohols, esters, fatty acids, aldehydes, and terpenes. There were significant differences between both inoculum ratios for medium-chain fatty acids (C8, C10, and C12), ethyl esters of fatty acids of C6, C10, C12, and C14 as well as isoamyl octanoate, while other volatiles were statistically the same.  相似文献   

14.
15.
16.
Sequences of two internally transcribed spacer regions between 18S and 28S rRNA genes were determined to assess the phylogenetic relationship in the strains belonging to the genus Saccharomyces. The sequences of S. bayanus and S. pastorianus were quite similar, but not identical. Two phylogenetic trees constructed by the neighbor-joining method showed that all the species examined were distinguished from one another. The Saccharomyces sensu stricto species: S. cerevisiae, S. bayanus, S. paradoxus and S. pastorianus, were closely related and far from the Saccharomyces sensu lato species including S. barnetti, S. castellii, S. dairensis, S. exiguus, S. servazzii, S. spencerorum and S. unisporus, and an outlying species, S. kluyveri. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
A Saccharomyces cerevisiae sequence cloned by serendipity was found to encode a protein that is a new member of the Ypt/Rab monomeric G-protein family. This sequence shows high homology to the yeast genes SEC4 and YPT1 and, like SEC4 and YPT1, is essential for viability. The sequence was localized to chromosome V based upon hybridization to pulse-field gel-separated yeast chromosomes. The sequence has been deposited in the GenBank data library under Accession Number L17070.  相似文献   

18.
The nucleotide sequence of a 43 118 bp fragment from chromosome VII of Saccharomyces cerevisiae has been determined and analysed. The fragment originates from the right arm of chromosome VII. It starts approximately 11 kb centromere-proximal to the pet54 marker and ends in the middle of the PFK1 gene. The sequence contains a small nuclear RNA gene (SNR7) and 29 open reading frames (ORFs) larger than 100 amino acids. Six of these were completely internal to or partially overlapped other ORFs. Six previously described genes, YLM9/MRPL9, CRM1, DIE2, SMI1, PHO81 and YHB4, were mapped to this region in addition to pet54 and PFK1. Of the remaining 17 ORFs, four showed homology with other S. cerevisiae genes and four, including one of the partially overlapping ORFs, with genes from other organisms. Eight ORFs had no homology with any sequence in the databases. The actual sequences have been deposited in the EMBL database under Accession Number X87941.  相似文献   

19.
Terpene profile of Muscat wines fermented by Saccharomyces species and hybrid yeasts was investigated. The amount of geraniol decreased in most wines with respect to the initial must except for Saccharomyces bayanus wines. On the other hand, alpha-terpineol amount was higher in wines fermented by Saccharomyces cerevisiae and hybrid yeasts. The amount of linalool was similar in all wines and comparable to the amount in the initial must. Lower levels of beta-d-glucosidase activity were found in the hybrid yeasts with respect to S. cerevisiae. Moreover, no relationship between beta-d-glucosidase activity and terpenes profile in Muscat wines fermented with Saccharomyces species and hybrids was found. Growth of yeasts on minimum medium supplemented with geraniol showed bioconversion of geraniol into linalool and alpha-terpineol. Percentages of geraniol uptake and bioconversion were different between Saccharomyces species and hybrids. Strains within S. bayanus, Saccharomyces kudriavzevii and hybrids showed higher geraniol uptake than S. cerevisiae, whereas the percentage of produced linalool and alpha-terpineol was higher in S. cerevisiae and hybrid yeasts than in S. bayanus and S. kudriavzevii. The relationship between geraniol uptake and adaptation of Saccharomyces species to grow at low temperature is discussed.  相似文献   

20.
The DNA sequence of a fragment of 21 731 bp (nucleotides 87408 to 109138) located on the left arm of chromosome VII from Saccharomyces cerevisiae S288C has been determined using a random cloning strategy followed by an oligonucleotide-directed sequencing. This fragment contains eight complete genes previously sequenced (CLG1, SKI8, VAM7, YPT32, MIG2, SIP2, SPT16 and CHC1), the 5′ part of POX1 and two other complete unidentified open reading frames of more than 100 amino acids. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号