首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
To study the function of GCR1, a gene involved in the expression of glycolytic genes in Saccharomyces cerevisiae, a Kluyveromyces lactis gene that complements the growth defect of a S. cerevisiae Deltagcr1 mutant was isolated. Introduction of this gene into the Deltagcr1 mutant also restored the activities of glycolytic enzymes. DNA sequencing of KlGCR1 predicted an open reading frame of a 767 amino acid protein with an overall identity of 33% and similarity of 48% to Gcr1p from S. cerevisiae. Its DDBJ/EMBL/GenBank Accession No. is AB046391.  相似文献   

5.
In the yeast two-hybrid system, the N-terminal region of Rap1p was shown to interact with Gcr1p and Gcr2p. Disruption of gcr1 and/or gcr2 in the two-hybrid reporter strain demonstrated that the interaction with Gcr1p does not require Gcr2p, whereas the interaction with Gcr2p is mediated through Gcr1p. Deletion of the N-terminal region of Rap1p alone did not show a growth phenotype, but a growth defect was observed when this mutation was combined with a gcr2 deletion. The poor growth of the gcr1 null mutant was not affected further by the N-terminal deletion of Rap1p, but the growth of gcr1 strains with mutations in the DNA binding region of Gcr1p was affected by the removal of the N-terminal region of Rap1p. These results suggest that one function of the N-terminal region of Rap1p, presumably the BRCT domain, is to facilitate the binding of Gcr1p to the promoter by a protein-protein interaction.  相似文献   

6.
7.
8.
9.
We searched for fission yeast (Schizosaccharomyces pombe) proteins that preferentially bind to a synthetic curved DNA sequence, by means of a DNA-binding gel shift assay in the presence of an excess amount of a non-curved DNA sequence as a competitor. We identified such a protein in S. pombe. The protein, thus purified, has an apparent molecular weight of 42 000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was suggested that this protein (42 K-protein) recognizes and binds to a curved DNA structure in a given nucleotide sequence, although it also binds to a non-curved DNA sequence with lower affinity. As its putative coding sequence, a 1·9-kilobase genomic DNA from S. pombe was cloned and sequenced. Sequencing of a cDNA clone also revealed the existence of an open reading frame, with no intron, encoding a 381-amino-acid protein with a calculated molecular mass, 41 597. This protein appears to be located in the nucleus. The predicted protein sequence revealed that the 42 K-protein exhibits no significant similarity to any other known proteins, except to a hypothetical protein of Caenorhabditis elegans.  相似文献   

10.
11.
To study the function of GCR3, a gene involved in the expression of glycolytic genes in Saccharomyces cerevisiae, a Candida albicans gene which complements the growth defect of the (delta)gcr3 mutant was isolated. Transformants of this gene also recovered the glycolytic enzyme activities. Its DNA sequencing predicted an 886 amino acid protein with 30.4% identity to the Gcr3p of S. cerevisiae.  相似文献   

12.
We have sequenced a region of 51 kb of the right arm from chromosome XV of Saccharomyces cerevisiae. The sequence contains 30 open reading frames (ORFs) of more than 100 amino acid residues. Thirteen new genes have been identified. Thirteen ORFs correspond to known yeast genes. One delta element and one tRNA gene were identified. Upstream of the RPO31 gene, encoding the largest subunit of RNA polymerase III, lies a Abf1p binding site. The nucleotide sequence data reported in this paper are available in the EMBL, GenBank and DDBJ nucleotide sequence databases under the Accession Number X90518.  相似文献   

13.
14.
15.
16.
17.
REC102 is a meiosis-specific early exchange gene absolutely required for meiotic recombination in Saccharomyces cerevisiae. Sequence analysis of REC102 indicates that there are multiple potential regulatory elements in its promoter region, and a possible regulatory element in the coding region. This suggests that the regulation of REC102 may be complex and may include elements not yet reported in other meiotic genes. To identify potential cis-regulatory elements, phylogenetic footprinting analysis was used. REC102 homologues were cloned from other two Saccharomyces spp. and sequence comparison among the three species defined evolutionarily conserved elements. Deletion analysis demonstrated that the early meiotic gene regulatory element URS1 was necessary but not sufficient for proper regulation of REC102. Upstream elements, including the binding sites for Gcr1p, Yap1p, Rap1p and several novel conserved sequences, are also required for the normal regulation of REC102 as well as a Rap1p binding site located in the coding region. The data in this paper support the use of phylogenetic comparisions as a method for determining important sequences in complex promoters.  相似文献   

18.
19.
As part of the European BIOTECH programme, the nucleotide sequence of a 16691bp fragment from the left arm of chromosome IV of Saccharomyces cerevisiae has been deduced. Analysis of the sequence reveals the presence of 13 open reading frames (ORFs) larger than 100 codons. Five of these were previously identified as genes DUN1, PMT1, PMT5, SRP14 and DPR1. One putative protein, D2371p, contains an ATP-GTP binding site, and shares homology to the ArsA component of an Escherichia coli arsenical pump. No significant homology to any known protein has been found for the other ORFs. D2378p contains a zinc finger domain. The nucleotide sequence has been deposited at EMBL, with Accession Number X95644.  相似文献   

20.
We cloned a genomic DNA fragment of the yeast Torulaspora delbrueckii by complementation of a Saccharomyces cerevisiae snf1Δ mutant strain. DNA sequence analysis revealed that the fragment contained a complete open reading frame (ORF), which shares a high similarity with the S. cerevisiae energy sensor protein kinase Snf1. The cloned TdSNF1 gene was able to restore growth of the S. cerevisiae snf1Δ mutant strain on media containing nonfermentable carbon sources. Furthermore, cells of the Tdsnf1Δ mutant were unable to proliferate under nonfermenting conditions. Finally, protein domain analysis showed that TdSnf1p contains a typical catalytic protein kinase domain (positions 41–293), which is also present in other Snf1p homologues. Within this region we identified a protein kinase ATP‐binding region (positions 48–71) and a consensus Ser/Thr protein kinase active site (positions 160–172). The GenBank Accession No. for the sequenced DNA fragment is HM131845. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号