首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In composites consisting of a thermoplastic butadiene–styrene (SBS) elastomer matrix reinforced with oxidized short carbon fiber, scanning electron microscopy (SEM) reveals the existence of matrix–fiber interactions, which are not detected when employing commercial carbon fiber. Interpretation of the dynamic properties and other parameters, such as equivalent interfacial thickness, and glass transition temperature, measured in terms of maximum damping temperature, as well as the apparent activation energy of the relaxation process, helps to explain the existence of such interactions. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1819–1826, 1998  相似文献   

2.
This work reports on some results of research conducted on composite materials consisting of a butadiene–styrene (SBS) thermoplastic elastomer matrix filled with short carbon fibres previously subjected to oxidative treatment to increase the surface functionality. Scanning electron microscopy confirms the existence of interactions between the matrix and the fibre, which are not observed for commercial fibre fillers and which translate into mechanical strength increments, in terms of the Young’s modulus, tensile and tear strengths for the oxidized fibre composites. The stress–strain curves of the composites show yield point phenomena as strain is applied longitudinally to the main fibre orientation. In oxidized fibre composites the stress and strain coordinates are a function of the degree of oxidation (greater strain for more strongly oxidized fibre) and fibre strength (lower stress for longer treatment times). © 1997 SCI.  相似文献   

3.
The factors influencing the mechanical properties of styrene–butadiene–styrene block copolymer (SBS) composites filled with liquid polybutadiene (LB)‐surface‐treated calcium carbonate (CaCO3) were investigated with respect to the molecular structure of the LB, the amount of the LB adsorbed on the CaCO3 surface, the heat treatment conditions, and the surface treatment method. The mechanical properties, such as the modulus, tensile strength at break, tear strength, storage modulus, and tension set, of the SBS composites were improved remarkably through the filling of CaCO3 surface‐treated with a carboxylated LB with a high content of 1,2‐double bonds. The heat treatment of LB–CaCO3 in air was also effective in enhancing such properties. When SBS, CaCO3, and LB were directly blended (with the integral blend method), secondary aggregation of CaCO3 took place, and the mechanical properties of the composite were significantly lower. In the integral blend method, LB functioned as a plasticizer. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Thermoplastic composites of polycarbonate (PC)/acrylonitrile–butadiene–styrene copolymer (ABS) alloys reinforced with recycled carbon fiber (RCF) were prepared by melt extrusion through a twin‐screw extruder. The RCF was first cleaned and activated with a concentrated solution of nitric acid and was then surface‐coated with diglycidyl ether of bisphenol A as a macromolecular coupling agent. Such an approach is effective to improve the interfacial bonding between the fibers and the PC/ABS matrix. As was expected, the reinforcing potential of the RCF was enhanced substantially, and furthermore, the mechanical properties, heat distortion temperature, and thermal stability of PC/ABS alloys were significantly improved by incorporating this surface‐treated RCF. The composites also obtained a reduction in electrical resistivity. The morphologies of impact fracture surfaces demonstrated that the RCF achieved a homogeneous dispersion in the PC/ABS matrix due to good interfacial adhesion between the fibers and the matrix. In addition, the introduction of RCF into PC/ABS alloys also resulted in an increase in the storage moduli of the composites but a decrease in the loss factors. It is prospective that, with such good performance in mechanical data, heat resistance, and electrostatic discharge, the RCF‐reinforced PC/ABS composites exhibit a potential application in industrial and civil fields as high‐performance and lightweight materials. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
As the material properties of acrylonitrile–butadiene–styrene copolymer (ABS) have an excessively wide margin for applications in automobile console boxes, ABS partly replaced with poly(l ‐lactic acid) (PLA) may be used for the same purpose with improved ecofriendliness if the corresponding deterioration of the material properties is acceptable through the choice of appropriate additives. ABS composites with 30 wt % renewable components (PLA and cellulose pulp) were prepared by melt compounding, and the material properties were examined as a function of the additive content. The changes in the mechanical properties of the ABS/PLA blends were examined after the addition of cellulose pulp and two clays [Cloisite 25A (C25A) and sodium montmorillonite] as well as these two clays treated with bis(3‐triethoxysilylpropyl)tetrasulfide (TESPT). The heat distortion temperatures of the composites were measured as a function of the content of the TESPT‐treated C25A. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40329.  相似文献   

6.
A measuring method for a conductivity change through a current change during extension deformation or compression deformation of conductive elastomeric composites composed of a polyaniline (PAn)/styrene–butadiene–styrene (SBS) triblock copolymer was established. The composites were prepared by in situ emulsion polymerization of aniline in the presence of SBS using dodecylbenzene sulfonic acid (DBSA) as an emulsifier and a dopant. The product was melt‐processed (MP), solution‐processed (SP), or secondary doped with m‐cresol (SSP). The results for measurement of the conductivity change of the composites processed by the three different methods showed that for the MP and SP samples conductivity increases with extension, whereas for the SSP sample when the PAn content is lower than the percolation threshold, conductivity diminishes with increasing extension, but when the PAn content exceeds the percolation threshold value, conductivity followed an empirical equation with a maximum value. During compression, the conductivities of most of the MP, SP, and SSP samples exhibited a maximum value with change of the compression force, except the MP sample with a higher PAn content, the conductivity of which increased with the compression force. All the differences are related to their different morphological structures. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2156–2164, 2000  相似文献   

7.
Titanate coupling agent (TCA) is widely used as a plasticizer in filled polymer processes. In this study, the effect of TCA with different contents (2 and 10 wt %) on the electrical conductivity, wave absorption, and mechanical properties of carbon black (CB)/acrylonitrile–butadiene–styrene (ABS) composites were investigated. The results indicate that with the addition of 2 wt % TCA to the filled CB, the electrical conductivity of CB/ABS composites improved greatly, but its wave absorption performance was weakened. In contrast, the addition of 10 wt % TCA to the filled CB improved the microwave absorption performance of the CB/ABS composites but led to poor electrical conductivity. However, TCA, regardless of the contents of 2 or 10 wt %, greatly improved the mechanical properties of the composites. The probable reasons for this are discussed on the basis of the fracture morphology of the sample, a chemical band between the filling and resin, and the physical coating between the filling and TCA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1839–1843, 2006  相似文献   

8.
As novel piezoelectric materials, carbon‐reinforced polymer composites exhibit excellent piezoelectric properties and flexibility. In this study, we used a styrene–butadiene–styrene triblock copolymer covalently grafted with graphene (SBS‐g‐RGO) to prepare SBS‐g‐RGO/styrene–butadiene–styrene (SBS) composites to enhance the organic solubility of graphene sheets and its dispersion in composites. Once exfoliated from natural graphite, graphene oxide was chemically modified with 1,6‐hexanediamine to functionalize with amino groups (GO–NH2), and this was followed by reduction with hydrazine [amine‐functionalized graphene oxide (RGO–NH2)]. SBS‐g‐RGO was finally obtained by the reaction of RGO–NH2 and maleic anhydride grafted SBS. After that, X‐ray diffraction, X‐ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and other methods were applied to characterize SBS‐g‐RGO. The results indicate that the SBS molecules were grafted onto the graphene sheets by covalent bonds, and SBS‐g‐RGO was dispersed well. In addition, the mechanical and electrical conductivity properties of the SBS‐g‐RGO/SBS composites showed significant improvements because of the excellent interfacial interactions and homogeneous dispersion of SBS‐g‐RGO in SBS. Moreover, the composites exhibited remarkable piezo resistivity under vertical compression and great repeatability after 10 compression cycles; thus, the composites have the potential to be applied in sensor production. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46568.  相似文献   

9.
Polystyrene/Styrene‐Ethylene‐Propylene‐Styrene/Vinyl Ester Resin (PS/SEPS/VER) blends used as matrix of ultra high molecular weight polyethylene (UHMWPE) fiber‐reinforced composites, which included both physical crosslinking points of thermoplastic resin SEPS and chemical crosslinking network of thermosetting resin PS/VER, were prepared by solution blending and hot‐molding. Morphology and mechanical properties of the PS/SEPS/VER composites were investigated in this work. The microstructure of PS/SEPS/VER composites observed by means of scanning electron microscopy (SEM) was correlated with mechanical properties. It is worth noting that, stiffness increased sharply with the addition of VER within a certain range. Impact properties verified the structure that the physical crosslinking points of SEPS were immersed in the chemical crosslinking network of PS/VER. Dynamic mechanical analysis revealed that, incorporation of VER changed the storage modulus and loss tangent. In brief, addition of VER had improved mechanical properties, thermal stability, and fluidity of the composites during processing, indicating a successful result for preparing resin matrix material with outstanding comprehensive performances. Analog map was presented to facilitate better understanding of the special structure of PS/SEPS/VER. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
The performance of white rice husk ash (WRHA) as filler for polypropylene (PP)/ethylene‐propylene‐diene terpolymer (EPDM) thermoplastic elastomer (TPE) composites was investigated. The composites with different filler loadings were prepared in a Brabender plasticorder internal mixer. Both unvulcanized and dynamically vulcanized composites were prepared. Mixing and vulcanization processes of the composites were monitored through the typical Brabender torque‐time curves. The mechanical properties and morphology of the composites were also studied. The Brabender torque curves revealed that the dynamic vulcanization process employed was successful and incorporation of filler has no adverse effect on the processibility of the composites. Incorporation of WRHA improves the tensile modulus and flexural modulus and lowers tensile strength, elongation at break, tear strength, and toughness of both types of composites. Dynamic vulcanization significantly enhances the mechanical and TPE properties of the composites. Dynamic mechanical analysis (DMA) study revealed the existence of two phases in both types of composites. It further shows that neither dynamic vulcanization nor filler agglomeration has played a prominent role in the compatibility of the composites. Thermogravimetric investigation shows that dynamic vulcanization or WRHA loading has not adversely affected the thermal stability of the composites. The scanning electron micrographs provide evidence for the tendency to form filler agglomerates with increasing filler loading, better filler dispersion of dynamically vulcanized composites over unvulcanized composites, and effective vulcanization of elastomer phase of the composites in the presence of filler. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 438–453, 2002  相似文献   

11.
In the present article, a series of commercial‐grade polypropylenes (PP) filled with different contents of short basalt fibers were studied. This composite material presented deterioration of both mechanical characteristics, for example, stress and strain at yield with increasing of the fiber content. On the other hand, the impact strength was fourfold higher than that of unfilled PP. A poor adhesion between the PP matrix and the basalt fibers was detected. This is why interfacial interactions were promoted by the adding of poly(propylene‐g‐maleic anhydride) (PP‐g‐MA). It was observed that the tensile properties of the obtained materials and their impact strengths increased significantly with increasing of the amount of PP‐g‐MA in the blend. The adhesion improvement was confirmed by scanning electron microscopy as well. Fourier transform infrared spectroscopy was applied to assess if any chemical interactions in the system PP/PP‐g‐MA/basalt fibers exist. Dynamic mechanical thermal analysis data showed an increase of the storage modulus with increasing fiber content. The conclusion was made that the modification of the PP matrix led to a higher stiffness but its value remained constant, irrespective of the PP‐g‐MA content. With increasing fiber content, damping in the β‐region decreased, but increase of the coupling agent content restored its value back to that of PP. The loss modulus spectra presented a strong influence of fiber content on the α‐relaxation process of PP. The position of the peaks of the above‐mentioned relaxation processes are discussed as well. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 523–531, 1999  相似文献   

12.
UV‐activated frontal polymerization was exploited for the preparation of epoxy–carbon fibre composites. The curing process was investigated showing the frontal behaviour, and the final properties of UV‐cured composites were compared with those of the same composites obtained by thermal curing in the presence of amine as hardener. The best curing formulations were designed, defining the photoinitiator‐to‐thermal initiator ratio, which was 1.5:1.5. It was observed that the presence of the carbon fibres induced an acceleration of the front velocity. By comparing the thermomechanical properties of the thermally cured composite and the same composite crosslinked using the frontal process, we could observe that the latter showed higher Tg value and lower σf. This was attributed to the formation of a different polymeric network structure. © 2019 Society of Chemical Industry  相似文献   

13.
Advanced polymer composites containing organic–inorganic fillers are gaining increasing attention due to their multifunctional applications. In this work, poly(styrene‐butadiene‐styrene) (SBS) composites containing magnetite‐functionalized graphene (FG) were prepared by a dissolution ? dispersion ? precipitation solution method. Evidently, through morphology studies, amounts of FG were well distributed in the SBS matrix. Improvements in neat SBS properties with respect to FG loading in terms of thermal stability, creep recovery and mechanical properties are presented. As expected, the addition of FG improved the thermal stability and mechanical properties of the composites. The yield strength and Young's modulus of the SBS increased by 66% and 146% at 5 wt% filler loading which can be attributed to the reinforcing nature of FG. Similarly, an increase in the storage and loss modulus of the composites showed a reinforcement effect of the filler even at low concentration. The results also showed the significant role of FG in improving the creep and recovery performance of the SBS copolymer. Creep deformation decreased with filler loading but increased with temperature. © 2017 Society of Chemical Industry  相似文献   

14.
Thermoplastic conducting composites of polyparaphenylene diazomethine (PPDA), polythiophene (PTH), poly‐3,4‐Ethylenedioxythiophene (PEDOT), and polyaniline (PANI) with polyvinylchloride (PVC) and polyurethane (PU) were prepared. Conducting composites were prepared by in situ polymerization of thiophene, ethylene dioxy thiophene, and aniline in the presence of polyvinyl chloride and polyurethane using FeCl3 as the oxidizing agent. PPDA composites were prepared by dispersing PPDA powder in the polymer solution followed by casting. The microwave properties of all the composites were studied in the S band using Vector Network Analyzer and the best composite was selected based on the dielectric properties for microwave applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
The effect of oxidized polypropylene (OPP) as new compatibilizer on the water absorption and mechanical properties of wood flour–polypropylene (PP) composites were studied and compared with maleic anhydride grafted polypropylene (MAPP). The oxidation of PP was performed in the molten state in the presence of air. Wood flour, PP, and the compatibilizers (OPP and MAPP) were mixed in an internal mixer at temperature of 190°C. The amorphous composites removed from the mixer were then pressed into plates that had a nominal thickness of 2 mm and nominal dimensions of 15 × 15 cm2 with a laboratory hydraulic hot press at 190°C. Physical and mechanical tests showed that the wood flour–PP composites with OPP exhibited higher flexural and impact properties but lower water absorption than MAPP. All of the composites with 2% compatibilizers (OPP and MAPP) gave higher flexural and impact properties and lower water absorption compared to those with 4% compatibilizers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
蒋果  徐景活  冯健  黄汉雄  张水洞 《化工学报》2015,66(7):2718-2724
采用熔融共混的方法制备了马来酸酐接枝聚碳酸亚丙酯(PPCMA)/热塑性淀粉(TPS)、PPCMA/热塑性氧化淀粉(TPOS)和PPCMA/ DL-TPOS(铝酸酯预处理的TPOS)复合材料,研究淀粉的氧化以及偶联剂的加入对PPC复合材料流变、形态和性能的影响。加入淀粉后的PPC复合材料拉伸强度有较大提高,红外光谱结果显示淀粉和PPCMA之间形成了氢键作用,这可能是力学性能提高的主要原因;热塑性氧化淀粉与PPCMA基材的界面相容性提高,PPCMA/TPOS复合材料的力学性能、储能模量、损耗模量和复数黏度均高于PPCMA/TPS复合材料;铝酸酯对TPOS的预处理促进了TPOS在PPCMA中的分散,提高了复合材料的拉伸强度,在PPCMA/DL-TPOS体系中,当DL-TPOS含量为40%(质量分数)时拉伸强度达到最大值,与PPCMA相比,提高了4.6倍。  相似文献   

17.
Carbon nanotube (CNT)/styrene–ethylene–butylene–styrene (SEBS) composites were prepared via a sequential process of (electrostatic adsorption assisted dispersion)‐plus‐(melt mixing). It was found that CNTs were uniformly embedded in SEBS matrix and a low percolation threshold was achieved at the CNT concentration of 0.186 vol %. According to thermal gravimetric analysis, the temperatures of 20% and 50% weight loss were improved from 316°C and 352°C of pure SEBS to 439°C and 463°C of the 3 wt % CNT/SEBS composites, respectively. Meanwhile, the tensile strength and elastic modulus were improved by about 75% and 181.2% from 24 and 1.6 MPa of pure SEBS to 42 and 4.5 MPa of the 3 wt % CNT/SEBS composite based on the tensile tests, respectively. Importantly, this simple and low‐cost method shows the potential for the preparation of CNT/polymer composite materials with enhanced electrical, mechanical properties, and thermal stability for industrial applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40227.  相似文献   

18.
Transparent poly(styrene‐butadiene‐styrene) (SBS)‐quantum dots (QDs) composites (SBS/CdTe QDs) that simultaneously possess strong photoluminescence (PL) and enhanced mechanical properties are presented for the first time based on the facile blending of SiO2‐hybridized CdTe QDs with SBS. UV–vis spectrum and fluorescence measurement show that SBS/CdTe QDs composites exhibit good optical properties. The results of transmission electron microscopy show good dispersion of CdTe QDs in the SBS matrix. The results of dynamic mechanical thermal analysis indicate that the micro‐phase separated structure of the SBS is exist in the composites, and the presence of CdTe QDs can lead to an decrease of glass transition temperatures of polybutadiene (PB) and polystyrene(PS) domains. In addition, mechanical tests reveal that the addition of CdTe QDs is a useful approach to improve the mechanical properties of SBS. Meanwhile, the fluorescent photographs taken under ultraviolet light prove that SBS/CdTe QDs composites possess strong PL. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

19.
The structure development, rheological behavior, and viscoelastic properties of carbon black‐filled dynamically vulcanized thermoplastic elastomers based on the ethylene–propylene–diene terpolymer (EPDM) and polypropylene (PP) with the ratio range of 50/50 to 80/20 were studied and compared with similar but unfilled samples. Two‐phase morphology was observed at all ratios for the dynamically cured samples in which rubber particles are dispersed in the thermoplastic matrix. Carbon black distribution in each phase and damping behavior was found to be dependent upon the mixing condition and route of carbon black feeding. However, carbon black tends to stay mainly in the rubber phase, which leads to increase in the viscosity difference and, therefore, increase in the rubber particle size. Tensile strength and rupture energy increased with carbon black loading. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1127–1137, 2000  相似文献   

20.
The mechanical, thermal, rheological, and morphological properties of polypropylene (PP)/polystyrene (PS) blends compatibilized with styrene–isoprene–styrene (SIS), styrene–butadiene–styrene (SBS), and styrene–butadiene–rubber (SBR) were studied. The incompatible PP and PS phases were effectively dispersed by the addition of SIS, SBS, and SBR as compatibilizers. The PP/PS blends were mechanically evaluated in terms of the impact strength, ductility, and tensile yield stress to determine the influence of the compatibilizers on the performance properties of these materials. SIS‐ and SBS‐compatibilized blends showed significantly improved impact strength and ductility in comparison with SBR‐compatibilized blends over the entire range of compatibilizer concentrations. Differential scanning calorimetry indicated compatibility between the components upon the addition of SIS, SBS, and SBR by the appearance of shifts in the melt peak of PP toward the melting range of PS. The melt viscosity and storage modulus of the blends depended on the composition, type, and amount of compatibilizer. Scanning electron microscopy images confirmed the compatibility between the PP and PS components in the presence of SIS, SBS, and SBR by showing finer phase domains. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 266–277, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号