首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequence analysis of the newly defined SSU81 gene revealed an adjacent open reading frame (ORF) encoding a protein whose deduced amino acid sequence is identical to that of ribosomal protein L17. The DNA sequence of this region is different from that of the RPL17A gene and therefore represents a duplicate gene encoding L17. We have designated this gene RPL17B. The RPL17B coding region is split by an intron that occurs in the same position (codons 14/15) as the intron in RPL17A. The RPL17B promoter region includes two TATA boxes, a canonical UASRPG motif, and several pyrimidine-rich tracts. RPL17B was mapped by CHEF and lambda clone grid hybridization blots to the right arm of chromosome V, linked to the TRP2 and RAD51 genes. A partial ORF was identified adjacent to RPL17B and SSU81 that is homologous to an ORF (designated A509) physically linked to RPL17A. This observation, and the identical position of the introns within the RPL17 genes, suggest that one RPL17 locus arose by duplication and translocation of the other. The complete 3·8 kbp DNA sequence encompassing RPL17B has been entered in the GenBank data library under Accession Number U15653.  相似文献   

2.
A gene designated RPL19A has been identified in the region downstream from the 3′-end of the Saccharomyces cerevisiae MIS1 gene encoding the mitochondrial C1-tetrahydrofolate synthase. The gene codes for the yeast ribosomal protein YL19 which exhibits 57·5% identity with the mammalian ribosomal protein L19. RPL19A is one of two functional copies of the YL19 gene located on chromosome II. The disruption of RPL19A has no effect on the growth of the yeast. The RPL19A gene contains an intron located near the 5′-end. The 5′-flanking region contains one similar and one complete UASrpg upstream activating sequence. RPL19A was also found to be adjacent to the chromosome II AAC3 gene, encoding the mitochondrial ADP/ATP carrier protein. The nucleotide sequence(s) reported in this paper has been submitted to the GenBanktm/EMBL data bank with the accession number Z36751.  相似文献   

3.
We have sequenced a continuous segment of 17 137 bp on chromosome X. Sequence analysis of this stretch revealed 14 open reading frames (ORFs) at least 100 amino acids long. One gene, encoding the mitochondrial 60S ribosomal protein L8, had already been sequenced. Four ORF products show weak homologies with known protein sequences. The nine remaining ORF products have no homologies with sequences in data banks. The nucleotide sequence of the 17·1 kb fragment is available through the EMBL data library under Accession Number Z34288.  相似文献   

4.
We have isolated a single gene from the yeast Saccharomyces cerevisiae encoding a potential 800 amino acid polypeptide of calculated Mr 90 098 Da. This protein consists of an N-terminal region that shares significant homology with the catalytic domains of several serine- and threonine-specific protein kinases, as well as a large, unique, C-terminal domain of unknown function. Haploid disruption mutants are viable and do not exhibit any readily observable growth defects under varying conditions of temperature, nutrients or osmotic strength. Due to the apparent structural similarity between this kinase and the protein products of the KIN1 and KIN2 genes, we have chosen to name this new gene KIN3.  相似文献   

5.
6.
7.
The gene encoding scHelI, a previously characterized DNA helicase from Saccharomyces cerevisiae, has been identified as YER176w, an open reading frame on chromosome V. The gene has been named HEL1 to indicate the DNA helicase activity of the gene product. HEL1 was identified by screening a |glgt11 yeast protein expression library with antiserum to purified scHelI. Several independent immunopositive clones were isolated and shown to contain portions of HEL1 either by sequencing or by hybridization to a probe containing HEL1 sequences. The HEL1 open reading frame includes the seven conserved helicase motifs, consistent with the DNA helicase activity of scHelI, and the predicted size of the protein is in agreement with the size of purified scHelI. Partially purified cellular extracts from a hel1 deletion mutant strain did not contain scHelI activity. Homology searches revealed protein sequence homology between HEL1 and two previously identified and biochemically characterized yeast helicases, encoded by the DNA2 and UPF1 genes. Haploid hel1 deletion strains were constructed and shown to be viable with growth rates equivalent to those of parental strains. These strains did not differ from the parental strains in ultraviolet light sensitivity or the generation of petite colonies. Furthermore, these haploid deletion strains were capable of mating, the resultant diploid homozygous mutants were viable, capable of sporulation, and the spores displayed no reduction in viability. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
9.
10.
11.
The above paper (Yeast 9 :, 289–293, 1993) erroneously presented a non-updated sequence due to data-transmission errors. The corrected sequence is 4939 bp in length and has been deposited in the EMBL Data Library under the accession number X71329. Consequently the amino acid sequences of YBR 12.03 and YBR 12.05 changed.  相似文献   

12.
The RPL44′ gene from Saccharomyces cerevisiae encoding the ribosomal protein YP1β(L44′) has been found to be linked to the STF1 gene, encoding a stabilizing factor of the F1F0-ATPase inhibitor protein from mitochondria. Evidence of this linkage comes from results obtained from Northern hybridization using a DNA probe that contains a complementary region to the 5′ end of the mRNA of RPL44′. Similarly, a data bank search has shown that RPL44, encoding ribosomal protein YP2α(L44) is linked to the rig gene that encodes ribosomal protein S21.  相似文献   

13.
14.
15.
A 3·6 kb DNA fragment from Saccharomyces douglasii, containing the ARG4 gene, has been cloned, sequenced and compared to the corresponding region from Saccharomyces cerevisiae. The organization of this region is identical in both yeasts. It contains besides the ARG4 gene, another complete open reading frame (ORF) (YSD83) and a third incomplete one (DED81). The ARG4 and the YSD83 coding regions differ from their S. cerevisiae homologs by 8.1% and 12·5%, respectively, of base substitutions. The encoded proteins have evolved differently: amino acid replacements are significantly less frequent in Arg4 (2·8%) than in Ysc83 (12·4%) and most of the changes in Arg4 are conservative, which is not the case for Ysc83. The non-coding regions are less conserved, with small AT-rich insertions/deletions and 20% base substitutions. However, the level of divergence is smaller in the aligned sequences of these regions than in silent sites of the ORFs, probably revealing a higher degree of constraints. The Gcn4 binding site and the region where meiotic double-strand breaks occur, are fully conserved. The data confirm that these two yeasts are evolutionarily closely related and that comparisons of their sequences might reveal conserved protein and DNA domains not expected to be found in sequence comparisons between more diverged organisms.  相似文献   

16.
The two genes encoding thioredoxins in Saccharomyces cerevisiae, TRX1 and TRX2, map to chromosome XII and VII, respectively. From the DNA sequence of the intragenic region TRX1 is 500 bp downstream of PDC1. Tetrad analysis places TRX2 1.1 cM from ADE3, while a physical map of this region positions TRX2 4.5 kb downstream of ADE3. The mapping of TRX1 adjacent to PDC1 clarifies previous results (Muller, E. G. D. J. Biol. Chem. 266, 9194-9202, 1991) that suggested a third thioredoxin gene.  相似文献   

17.
The function of the open reading frame (ORF) YOR108w of Saccharomyces cerevisiae has been analysed. The deletion of this ORF from chromosome XV did not give an identifiable phenotype. A mutant in which both ORF YOR108w and LEU4 gene have been deleted proved to be leucine auxotrophic and alpha-isopropylmalate synthase (alpha-IPMS)-negative. This mutant recovered alpha-IPMS activity and a Leu(+) phenotype when transformed with a plasmid copy of YOR108w. These data and the sequence homology indicated that YOR108w is the structural gene for alpha-IPMS II, responsible for the residual alpha-IPMS activity found in a leu4Delta strain. The leu4Delta strain appeared to be very sensitive to the leucine analogue trifluoroleucine. In the absence of leucine, its growth was not much impaired in glucose but more on non-fermentable carbon sources.  相似文献   

18.
Purification of Saccharomyces cerevisiae cystathionine γ-lyase (γ-CTLase) was hampered by the presence of a protein migrating very close to it in various types of column chromatography. The enzyme and the contaminant were nevertheless separated by polyacrylamide gel electrophoresis. N-terminal amino acid sequence analysis indicated that they are coded for by CYS3(CYI1) and MET17(MET25), respectively, leading to the conclusion that CYS3 is the structural gene for γ-CTLase and that the contaminant is O-acetylserine/O-acetylhomoserine sulfhydrylase (OAS/OAH SHLase). Based on these findings, we purified γ-CTLase by the following strategy: (1) extraction of OAS/OAH SHLase from a CYS3-disrupted strain; (2) preparation of antiserum against it; (3) identification of a strain devoid of the OAS/OAH SHLase protein using this antiserum; and (4) extraction of γ-CTLase from this strain. Purified γ-CTLase had cystathionine γ-synthase (γ-CTSase) activity if O-succinylhomoserine, but not O-acetylhomoserine, was used as substrate. From this notion we discuss the evolutional relationship between S. cerevisiae γ-CTLase and Escherichia coli γ-CTSase.  相似文献   

19.
We have determined the nucleotide sequence of a segment of chromosome VII of the yeast Saccharomyces cerevisiae contained in the cosmid clone pEGH101 for a total of 7 kbp. This sequence contains a large open reading frame (ORF) called G9365, coding for a protein of 1967 amino acids that shows a significant homology with the product of the SKI2 gene of S. cerevisiae and contains domains characteristic of RNA-helicases. The ORF is transcribed in vegetative cells but it is not essential for viability as demonstrated by gene disruption. The sequence has been deposited in the GenBank data library under Accession Number U35242. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
We present here mapping data for QCR9, a nuclear gene encoding a subunit of the ubiquinol-cytochrome c oxidoreductase complex. Deletion of QCR9 results in the inability of cells to grow on non-fermentable carbon sources at 37°C. Thus, qcr9 mutants can be scored by growing cells on YPE/G at 37°C, or followed by the URA3 marker, which was inserted when making the qcr9 deletion strain, JDP1. The location of QCR9 on the right arm of chromosome VII with respect to the previously mapped genes ADE3, SER2 and PET54 is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号