首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In a previous paper a modified Hu–Washizu variational formulation has been used to derive an accurate four node plane strain/stress finite element denoted QE2. For the mixed element QE2 two enhanced strain terms are used and the assumed stresses satisfy the equilibrium equations a priori for the linear elastic case. In this paper an alternative approach is discussed. The new formulation leads to the same accuracy for linear elastic problems as the QE2 element; however it turns out to be more efficient in numerical simulations, especially for large deformation problems. Using orthogonal stress and strain functions we derive B̄ functions which avoid numerical inversion of matrices. The B̄ ‐strain matrix is sparse and has the same structure as the strain matrix B obtained from a compatible displacement field. The implementation of the derived mixed element is basically the same as the one for a compatible displacement element. The only difference is that we have to compute a B̄ ‐strain matrix instead of the standard B ‐matrix. Accordingly, existing subroutines for a compatible displacement element can be easily changed to obtain the mixed‐enhanced finite element which yields a higher accuracy than the Q4 and QM6 elements. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Summary Initial yield is the upper limit of the purely elastic deformation behaviour of an elasticplastic solid. Thus the choice of the constitutive equation describing the purely elastic deformation behaviour determines the initial yield function. The constitutive equation of a simple elastic material is only compatible with von Mises yield criterion, a conclusion which applies also to the classical infinitesimal theory. A more general form of constitutive equation for an elastic material is formulated by way of the concept of a stress loading function, the proposed constitutive equation being quadratic in the stress. The two loading coefficients associated with the stress loading function are assumed to be deriveable from a generalised isotropic yield criterion which is now assumed to hold over the entire range of deformation, and in this context is referred to as the stress intensity function. The proposed constitutive equation has the same representation in terms of the left Cauchy-Green deformation tensor as that for a simple elastic material. Using the Cayley-Hamilton theorem, this representation is rearranged and expressed in terms of a measure of finite strain which is defined to be one quarter of the difference between the left Cauchy-Green deformation tensor and its inverse. In this way the strain properties of the proposed constitutive equation are formulated by way of the concept of a strain response function. The three response coefficients associated with the strain response function are assumed to be deriveable from a generalised, isotropic, strain intensity function. The predictions of the proposed constitutive equation are considered in the context of the combined stressing of a thin sheet of incompressible material. In this way, it is shown that the proposed constitutive equation is not limited in the same way as the constitutive equation of a simple elastic material.  相似文献   

4.
The present paper is concerned with an efficient framework for a nonlinear finite element procedure for the rate‐independent finite strain analysis of solids undergoing large elastic‐isochoric plastic deformations. The formulation relies on the introduction of a mixed‐variant metric deformation tensor which will be multiplicatively decomposed into a plastic and an elastic part. This leads to the definition of an appropriate logarithmic strain measure which can be additively decomposed into the exact isochoric (deviatoric) and volumetric (spheric) strain measures. This fact may be seen as the basic idea in the formulation of appropriate mixed finite elements which guarantee the accurate computation of isochoric strains. The mixed‐variant logarithmic elastic strain tensor provides a basis for the definition of a local isotropic hyperelastic stress response whereas the plastic material behavior is assumed to be governed by a generalized J2 yield criterion and rate‐independent isochoric plastic strain rates are computed using an associated flow rule. On the numerical side, the computation of the logarithmic strain tensors is based on higher‐order Padé approximations. To be able to take into account the plastic incompressibility constraint a modified mixed variational principle is considered which leads to a quasi‐displacement finite element procedure. Finally, the numerical solution of finite strain elastic‐plastic problems is presented to demonstrate the efficiency and the accuracy of the algorithm. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
An application of the element-based Lagrangian formulation is described for large-deformation analysis of both single-layered and laminated shells. Natural co-ordinate-based stresses, strains and constitutive equations are used throughout the formulation of the present shell element which offers significant implementation advantages compared with the traditional Lagrangian formulation. In order to avoid locking phenomena, an assumed strain method has been employed with judicious selection of the sampling points. Three strictly successive finite rotations are used to represent the current orientation of the shell normal. The equivalent natural constitutive equation is derived using an explicit transformation scheme to consider the multi-layer effect of laminated structures. The arc-length control method is used to trace complex load-displacement paths. Several numerical analyses are presented and discussed in order to investigate the capabilities of the present shell element. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
Superposition principle is used to separate the incident acoustic wave from the scattered and radiated waves in a displacement‐based finite element model. An absorbing boundary condition is applied to the perturbation part of the displacement. Linear constitutive equation allows for inhomogeneous, anisotropic materials, both fluids and solids. Displacement‐based finite elements are used for all materials in the computational volume. Robust performance for materials with limited compressibility is achieved using assumed‐strain nodally integrated simplex elements or incompatible‐mode brick elements. A centered‐difference time‐stepping algorithm is formulated to handle general damping accurately and efficiently. Verification problems (response of empty steel cylinder immersed in water to a step plane wave, and scattering of harmonic plane waves from an elastic sphere) are discussed for assumed‐strain simplex and for voxel‐based brick finite element models. A voxel‐based modeling scheme for complex biological geometries is described, and two illustrative results are presented from the bioacoustics application domain: reception of sound by the human ear and simulation of biosonar in beaked whales. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The paper presents the finite rotations beam equations derived on use of the generalized Reissner hypothesis with a scalar parameter for the transverse extension. The beam strain and change of curvature measures are obtained from the right stretch strain, and the virtual work is given for Biot‐type stress and couple resultants. The strain energy for the first‐order isotropic elastic material is assumed in terms of the right stretch strain, and constitutive equations for the beam stress and couple resultants are derived. Two finite rotation elements are developed from the derived beam equations: a beam element with the transverse stretch and a quadrilateral element. First, the beam element with the uniformly under‐integrated tangent operator is developed. Next, the formula linking the middle‐line variables and the interface variables of the beam is introduced consistently with the generalized Reissner kinematics. Linearization of this formula is performed, and the derived tangent operator is used to convert the two‐node beam element to a four‐node quadrilateral. Both the finite elements have been tested on several numerical examples, some of highly non‐linear characteristics, and their accuracy is very good. It has been established that the quadrilateral element, which is intended for applications to multi‐layer beams, performs very well for high elemental aspect ratios, and can therefore be applied to modelling of very thin layers. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
The present paper is concerned with an efficient framework for a nonlinear finite element procedure for the rate-independent finite strain analysis of solids undergoing large elastic-plastic deformations. The formulation relies on the introduction of a mixed-variant metric transformation tensor which will be multiplicatively decomposed into a plastic and an elastic part. This leads to the definition of an appropriate logarithmic strain measure whose rate is shown to be additively decomposed into elastic and plastic strain rate tensors. The mixed-variant logarithmic elastic strain tensor provides a basis for the definition of a local isotropic hyperelastic stress response in the elastic-plastic solid. Additionally, the plastic material behavior is assumed to be governed by a generalized J 2 yield criterion and rate-independent isochoric plastic strain rates are computed using an associated flow rule. On the numerical side, the computation of the logarithmic strain tensors is based on 1st and higher order Padé approximations. Estimates of the stress and strain histories are obtained via a highly stable and accurate explicit scalar integration procedure which employs a plastic predictor followed by an elastic corrector step. The development of a consistent elastic-plastic tangent operator as well as its implementation into a nonlinear finite element program will also be discussed. Finally, the numerical solution of finite strain elastic-plastic problems is presented to demonstrate the efficiency of the algorithm. Received: 17 May 1998  相似文献   

9.
A computational model for micropolar hyperelastic‐based finite elastoplasticity that incorporates isotropic hardening is developed. The basic concepts of the non‐linear micropolar kinematic framework are reviewed, and a thermodynamically consistent constitutive model that features Neo‐Hooke‐type elasticity and generalized von Mises plasticity is described. The integration of the constitutive initial value problem is carried out by means of an elastic‐predictor/plastic‐corrector algorithm, which retains plastic incompressibility. The solution procedure is developed carefully and described in detail. The consistent material tangent is derived. The micropolar constitutive model is implemented in an implicit finite element framework. The numerical example of a notched cylindrical bar subjected to large axial displacements and large twist angles is presented. The results of the finite element simulations demonstrate (i) that the methodology is capable of capturing the size effect in three‐dimensional elastoplastic solids in the finite strain regime, (ii) that the formulation possesses a regularizing effect in the presence of strain localization, and (iii) that asymptotically quadratic convergence rates of the Newton–Raphson procedure are achieved. Throughout this paper, effort is made to present the developments as a direct extension of standard finite deformation computational plasticity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The aim of the present paper is to propose a phenomenological thermodynamically consistent 3D model for shape memory alloys (SMA) in the finite strain range. In particular, a model able to predict the main features of SMA materials, such as the superelastic and the shape‐memory effects, is proposed. The model is based on the assumption of the local multiplicative split of the deformation gradient into an elastic and a phase transformation part. The governing state and evolutive equations are written in the undeformed configuration. The material parameters of the model are characterized by a clear physical meaning so that they can be determined by simple experimental tests. The finite deformation SMA model is also reformulated in the framework of small strain, linearizing the strain and stress measures in order to obtain a consistent constitutive model preserving the nonlinear material response. A robust algorithm is adopted in order to integrate the nonlinear evolutive equations; 2D and 3D finite elements are implemented in a numerical code considering finite and small deformations. Some numerical applications are carried out showing the performances of the proposed model and the developed numerical procedure to describe the superelastic and the shape‐memory effects of SMA devices. Comparisons of different results obtained by the small and finite strain formulations are reported. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The paper presents a formulation of isotropic large strain elasticity and addresses some computational aspects of its finite element implementation. On the theoretical side, an Eulerian setting of isotropic elasticity is discussed exclusively in terms of the Finger tensor as a strain measure. Noval aspects are a direct representation of the Eulerian elastic moduli in terms of the Finger tensor and their rigorous decomposition into decoupled volumetric and isochoric contributions based on a multiplicative split of the Finger tensor into spherical and unimodular parts. The isochoric stress response is formulated in terms of the eigenvalues of the unimodular part of the Finger tensor. A constitutive algorithm for the computation of the stresses and tangent moduli for plane problems is developed and applied to a model problem of rubber elasticity. On the computational side, the implementation of the constitutive model in three possible finite element formulations is discussed. After pointing out algorithmic techniques for the treatment of incompressible elasticity, several numerical simulations are presented which show the performance of the proposed constitutive algorithm and the convergence behaviour of the different finite element fomulations for compressible and incompressible elasticity.  相似文献   

12.
Summary The present paper is concerned with the formulation of a constitutive model describing the hysteresis loops of stress-strain relations of blood vessels under cyclic loading conditions. It is assumed that the hysteresis loop is composed of elastic deformation and viscoplastic deformation. Hence the total strain is expressed as the sum of the elastic part and the inelastic part on the basis of a finite deformation theory. Then the elastic part is established by postulating a strain energy function of an exponential type, while the inelastic part is formulated by modifying the nonlinear kinematic hardening rule in the viscoplastic model proposed by Chaboche et al. A comparison of the numerical result with the literature shows that the present model can describe the hysteresis loop qualitatively.  相似文献   

13.
For the case of metals with large viscoplastic strains, it is necessary to define appropriate constitutive models in order to obtain reliable results from the simulations. In this paper, two large strain viscoplastic Perzyna type models are considered. The first constitutive model has been proposed by Ponthot, and the elastic response is based on hypoelasticity. In this case, the kinematics of the constitutive model is based on the additive decomposition of the rate deformation tensor. The second constitutive model has been proposed by García Garino et al., and the elasticresponse is based on hyperelasticity. In this case, the kinematics of the constitutive model is based on the multiplicativedecomposition of the deformation gradient tensor. In both cases, the resultant numerical models have been implemented in updated Lagrangian formulation. In this work, global and local numerical results of the mechanical response of both constitutive models are analyzed and discussed. To this end, numerical experiments are performed and different parameters of the constitutive models are tested in order to study the sensitivity of the resultantalgorithms. In particular, the evolution of the reaction forces, the effective plastic strain, the deformed shapes and the sensitivity of the numerical results to the finite element mesh discretization have been compared and analyzed. The obtained results show that both models have a very good agreement and represent very well the characteristic of the viscoplastic constitutive model.  相似文献   

14.
The use of hypo-elastic constitutive equations for large strains in nonlinear finite element applications usually requires special considerations. For example, the strain does not tend to zero upon unloading in some elastic loading-unloading closed cycles. Furthermore, these equations are based on objective material time rate tensors, which require incrementally objective algorithms for numerical applications and integration. Hyper-elastic constitutive equations on the other hand do not require such considerations. However, their behaviour for large elastic strains is important and may differ in tension and compression. In the present work, Hyper-elastic constitutive equations for the Seth-Hill strains and their conjugate stresses are explored as a natural generalisation of Hook’s law for finite elastic deformations. Based on the uniaxial and simple shear tests, the response of the material for different constitutive equations is examined. Together with an objective rate model, the effect of different constitutive laws on Cauchy stress components is compared. It is shown that the constitutive equation based on logarithmic strain and its conjugate stress gives results closer to that of the rate model. In addition, the use of Biot stress-strain pairs for a bar element results in an elastic spring which obeys the Hook’s law even for large deformations and has the same behaviour in both tension and compression. The effect of the constitutive equation on the volume change of the material has also been considered here.  相似文献   

15.
In this paper, the problem of cavity formation and motion in an incompressible transversely isotropic nonlinearly elastic solid sphere, which is subjected to a uniform radial tensile dead load on its surface, is examined in the context of nonlinear elastodynamics. The strain energy density associated with the nonlinearly elastic material may be viewed as the generalized forms of some known material models. It is proved that some determinate conditions must be imposed on the form of the strain energy density such that the surface tensile dead load has a finite critical value. Correspondingly, as the surface tensile dead load exceeds the critical value, a cavity would form in the interior of the sphere and the motion of the formed cavity with time would present a class of singular nonlinear periodic oscillations. The effects of constitutive parameters on cavity formation and motion are discussed in detail, and the corresponding numerical examples are given simultaneously.  相似文献   

16.
In this paper a finite element method is developed to treat stability problems in finite elasticity. For this purpose the constitutive equations are formulated in principal stretches which allows a general representation of the derivatives of the strain energy function with respect to the principal stretches. These results can then be used to derive an efficient numerical scheme for the computation of singular points.  相似文献   

17.
The paper presents aspects of the finite element formulation of momentum and energy conserving algorithms for the non‐linear dynamic analysis of shell‐like structures. The key contribution is a detailed analysis of the implementation of a Simó–Tarnow‐type conservation scheme in a recently developed new mixed finite shell element. This continuum‐based shell element provides a well‐defined interface to strain‐driven constitutive stress updates algorithms. It is based on the classic brick‐type trilinear displacement element and is equipped with specific gradient‐type enhanced strain modes and shell‐typical assumed strain modifications. The excellent performance of the proposed dynamic shell formulation with respect to conservation properties and numerical stability behaviour is demonstrated by means of three representative numerical examples of elastodynamics which exhibit complex free motions of flexible structures undergoing large strains and large rigid‐body motions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
In this work, two well-known approaches for mixed finite elements are combined to render three novel classes of elements. First, the widely used enhanced assumed strain (EAS) method is considered. Its key idea is to enhance a compatible kinematic field with an incompatible part. The second concept is a framework for mixed elements inspired by polyconvex strain-energy functions, in which the deformation gradient, its cofactor and determinant are three principal kinematic fields. The key idea for the novel elements is to treat enhancement of those three fields separately. This approach leads to a plethora of novel enhancement strategies and promising mixed finite elements. Some key properties of the newly proposed mixed approaches are that they are based on a Hu-Washizu type variational functional, fulfill the patch test, are frame-invariant, can be constructed completely locking free and show no spurious hourglassing in elasticity. Furthermore, they give additional insight into the mechanisms of standard EAS elements. Extensive numerical investigations are performed to assess the elements' behavior in elastic and elasto-plastic simulations.  相似文献   

19.
The objective of this contribution is to model ductile damage phenomena under consideration of large inelastic strains, to couple the corresponding constitutive law with a multi‐layer shell kinematics and to give finally an adequate finite element formulation. An elastic–plastic constitutive law is formulated by using a spatial hyperelasto‐plastic formulation based on the multiplicative decomposition of the deformation gradient. To include isotropic ductile damage the continuum damage model of Rousselier is modified so as to consider large strains and additionally extended by various void nucleation and macro‐crack criteria. In order to achieve numerical efficiency, elastic strains are supposed to be sufficiently small providing a numerical effective integration based on the backward Euler rule. Finite element formulation is enriched by means of the enhanced strain concept. Thus the well‐known deficiencies due to incompressible deformations and the inclusion of transverse strains are avoided. Several examples are given to demonstrate the performance of the algorithms developed concerning large inelastic strains of shells and ductile damage phenomena. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a new class of assumed strain finite elements to use in combination with general energy‐momentum‐conserving time‐stepping algorithms so that these conservation properties in time are preserved by the fully discretized system in space and time. The case of interest corresponds to nearly incompressible material responses, in the fully non‐linear finite strain elastic and elastoplastic ranges. The new elements consider the classical scaling of the deformation gradient with an assumed Jacobian (its determinant) defined locally through a weighted averaging procedure at the element level. The key aspect of the newly proposed formulation is the definition of the associated linearized strain operator or B‐bar operator. The developments presented here start by identifying the conditions that this discrete operator must satisfy for the fully discrete system in time and space to inherit exactly the conservation laws of linear and angular momenta, and the conservation/dissipation law of energy for elastic and inelastic problems, respectively. Care is also taken of the preservation of the relative equilibria and the corresponding group motions associated with the momentum conservation laws, and characterized by purely rotational and translational motions superimposed to the equilibrium deformed configuration. With these developments at hand, a new general B‐bar operator is introduced that satisfies these conditions. The new operator not only accounts for the spatial interpolations (e.g. bilinear displacements with piece‐wise constant volume) but also depends on the discrete structure of the equations in time. The aforementioned conservation/dissipation properties of energy and momenta are then proven to hold rigorously for the final numerical schemes, unconditionally of the time step size and the material model (elastic or elastoplastic). Different finite elements are considered in this framework, including quadrilateral and triangular elements for plane problems and brick elements for three‐dimensional problems. Several representative numerical simulations are presented involving, in particular, the use of energy‐dissipating momentum‐conserving time‐stepping schemes recently developed by the author and co‐workers for general finite strain elastoplasticity in order to illustrate the properties of the new finite elements, including these conservation/dissipation properties in time and their locking‐free response in the quasi‐incompressible case. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号