首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Null mutations of genes from the NGF family of NTs and their receptors (NTRs) lead to loss/reduction of specific neurons in sensory ganglia; conversely, cutaneous overexpression of NTs results in skin hyperinnervation and increase or no changes in the number of sensory neurons innervating the skin. These neuronal changes are paralleled with loss of specific types of sensory nerve formations in the skin. Therefore, mice carrying mutations in NT or NTR genes represent an ideal model to identify the neuronal dependence of each type of cutaneous sensory nerve ending from a concrete subtype of sensory neuron, since the development, maintenance, and structural integrity of sensory nerve formations depend upon sensory neurons. Results obtained from these mouse strains suggest that TrkA positive neurons are connected to intraepithelial nerve fibers and other sensory nerve formations depending from C and Aδ nerve fibers; the neurons expressing TrkB and responding to BDNF and NT‐4 innervate Meissner corpuscles, a subpopulation of Merkell cells, some mechanoreceptors of the piloneural complex, and the Ruffini's corpuscles; finally, a subpopulation of neurons, which are responsive to NT‐3, support postnatal survival of some intraepithelial nerve fibers and Merkel cells in addition to the muscle mechanoreceptors. On the other hand, changes in NTs and NTRs affect the structure of non‐nervous structures of the skin and are at the basis of several cutaneous pathologies. This review is an update about the role of NTs and NTRs in the maintenance of normal cutaneous innervation and maintenance of skin integrity. Microsc. Res. Tech. 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
This article reviews the biochemical, physiological, and experimental data cumulated during the last decade on the Meissner and Pacinian corpuscles. It includes information about (i) the localization of molecules recently detected in sensory corpuscles; (ii) the unsolved problem of the accessory fibers in sensory corpuscles and the occurrence of myelin within them; (iii) the development of sensory corpuscles, especially their neuronal and growth factor dependency; (iv) the composition and functional significance of the extracellular matrix as an essential part of the mechanisms involved in the genesis of the stimuli generated in sensory corpuscles; (v) the molecular basis of mechanotransduction; (vi) a miscellaneous section containing sparse new data on the protein composition of sensory corpuscles, as well as in the proteins involved in live–death cell decisions; (vii) the changes in sensory corpuscles as a consequence of aging, the central, or peripheral nervous system injury; and finally, (viii) the special interest of Meissner corpuscles and Pacinian corpuscles for pathologists for the diagnosis of some peripheral neuropathies and neurodegenerative diseases. Microsc. Res. Tech., 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
Arthropod mechanosensory afferents have long been known to receive efferent synaptic connections onto their centrally located axon terminals. These connections cause presynaptic inhibition by attenuating the action potentials arriving at the axon terminals, thus reducing the synaptic potentials in the postsynaptic neurons. This type of inhibition can specifically reduce the excitation of selected postsynaptic neurons while leaving others unaffected. However, recent research has demonstrated that sensory signals detected by arthropod mechanosensory neurons can also be synaptically modulated before they ever arrive at the axon terminals. In arachnids and crustaceans, wide and complex networks of synapses on all parts of the afferent neurons, including the somata and dendrites, provide mechanisms to inhibit or enhance the responses to mechanical stimuli as they are being detected. This modulation will affect the signal transmission to all axonal branches and postsynaptic cells of the affected receptor neuron. In addition to the increased complexity of mechanosensory information transmission produced by these synapses, a variety of circulating neuroactive substances also modulate these neurons by acting on their postsynaptic receptors.  相似文献   

4.
This article reviews the distribution of S100 proteins in the human peripheral nervous system. The expression of S100 by peripheral glial cells seems to be a distinctive fact of these cells, independently of their localization and their ability to myelinate or not. S100 proteins expressing cells include satellite cells of sensory, sympathetic and enteric ganglia, supporting cells of the adrenal medulla, myelinating and non-myelinating Schwann cells in the nerve trunks, and the Schwann-related cells of sensory corpuscles. In addition, S100 proteins are expressed in peripheral neurons. Most of them express S100alpha protein, and a subpopulation of sensory neurons in dorsal root ganglia contains S100beta protein or S100alpha plus S100beta proteins.  相似文献   

5.
Effect of age on the friction and wear behaviors of human teeth   总被引:2,自引:1,他引:2  
Friction and wear behavior of human teeth at different ages against titanium alloy have been investigated using a reciprocating apparatus containing an artificial saliva solution. Human teeth at different ages of 8, 18, 35 and 55 years old were selected for tests. Both hardness and distribution of enamel rods on the occlusal surface, two of factors most important to tribological behavior of human teeth, are close to the age of teeth. It is found that not only the evolution of friction coefficient but also the wear behavior changes between teeth of different ages. Delamination and ploughing mechanisms are dominant for wear of human teeth, and more severe wear is observed for the primary and the permanent teeth at the old age accompanied by remarkable fluctuation in the friction coefficient. Compared with the primary teeth and the permanent teeth at the old age, the permanent teeth at the young and middle ages have better wear-resistance.  相似文献   

6.
Carbon-dioxide sensing structures in terrestrial arthropods   总被引:1,自引:0,他引:1  
Sensory structures that detect atmospheric carbon dioxide have been identified and described to the subcellular level in adults of Lepidoptera, Diptera, Hymenoptera, Isoptera, Chilopoda, and Ixodidae, as well as in lepidopteran larvae. The structures are usually composed of clusters of wall-pore type sensilla that may form distinct sensory organs, often recessed in pits or capsules. In insects, they are located on either the palps or the antennae, in chilopods on the head capsule, and in ixodids on the forelegs. In the two cases where the central projections have been examined (Lepidoptera and mosquitoes), the clustering is preserved to the level of second order neurons, which are located in the deutocerebrum. Individual sensilla usually contain a single receptor neuron that is sensitive to CO(2); it may be accompanied by other neurons that respond to other olfactory qualities. The distal dendritic processes of CO(2)-sensitive neurons invariably show an increased surface area, dividing into many cylindrical branches or into lamellar structures. Lamellar membranes are often closely linked to arrays of microtubules. Fine pore canal tubules are usually associated with the cuticular pores.  相似文献   

7.
Nitric oxide (NO) has been implied in age-related changes of the central nervous system (CNS) and the central auditory pathway. The present study was conducted to investigate whether the number of NO-producing cells and their morphometric characteristics in the inferior colliculus (IC) and the auditory cortex (AC) are changed with the increasing age of the subjects. IC and AC sections of adult and senile Wistar rats were studied using the histochemical detection of NADPH-diaphorase activity (NADPH-d), a marker for neurons containing nitric oxide synthase (NOS). Our results showed a decreased area of the somas of NADPH-d-positive neurons in the dorsal cortex (DC) of the IC and a diffuse loss of NADPH-d-positive neurons in the senile IC and primary cortical auditory area (Te1). However, an increased number of NO-producing cells have been shown by other authors in different parts of the ageing auditory pathway and CNS. It seems that age-related changes in NADPH-d-positive cells may follow a region-specific route. These changes may be related to hearing impairments with increasing age.  相似文献   

8.
Among gastropod molluscs the chemical senses are most important for location of distant objects. They are used in food finding, locating mates, avoiding predators, trail following, and homing. Chemoreceptors are commonly associated with the oral area, the tentacles, and the osphradium, which lies in the mantle cavity. Most chemosensory neurons are primary sensory neurons, although secondary sensory cells have been reported in the osphradium of some prosobranch gastropods. Most chemosensory organs contain sensory cells with ciliated sensory endings that are in contact with the external environment. Some sensory endings have only microvilli or have no surface elaborations. Cilia on sensory endings are commonly of the conventional type, but some species have modified cilia; some lack rootlets, some have an abnormal microtubular content, and some have paddle-shaped endings. The perikarya of sensory neurons may be within the sensory epithelium, below it, or in ganglia near the sensory surface. In some groups of gastropods there are peripheral ganglia in the olfactory pathway; in others chemosensory axons appear to pass directly to the CNS. Olfactory epithelia of terrestrial pulmonates have modified brush borders with long branching plasmatic processes and a spongy layer of cytoplasmic tubules which extend from the epithelial cells. Sensory endings of the olfactory receptors are entirely within this spongy layer. Aquatic pulmonates may have a similar spongy layer in their olfactory epithelia, but the cilia of sensory endings, as well as motile cilia of epithelial cells, extend well beyond the spongy layer.  相似文献   

9.
Neurons in the superficial layers of the superior colliculus are key elements in the visual system of rodents since they receive extensive afferent projections from retinal ganglion cells. The NADPH-diaphorase histochemical technique was used to detect differences in neuronal nitric oxide synthase (nNOS) in the superficial layers of the superior colliculus (sSC) of young adult (3 months) and aged (24 and 26 months) rats. The orientation of the dendritic processes of NADPH-diaphorase-positive neurons, cross-sectional area, and number of neurons per mm2 were analyzed. NADPH-d histochemistry revealed a high number of NADPH-d-positive cells in the stratum zonale and stratum griseum superficiale in adult and aged animals. NADPH-d-positive neurons were classified into the following morphological types: marginal, horizontal, pyriform, narrow-field vertical, wide-field vertical, and stellate. During aging, narrow field vertical and wide field vertical neurons present somatic atrophy and an increase in dendritic processes with dorsoventral orientation, whereas wide field vertical neurons show a decrease in those with lateromedial orientation. Marginal neurons undergo somatic hypertrophy at 26 months when compared with those at 3 months. The remaining types of neurons do not undergo size changes. Finally, the number of NADPH-d-positive neurons per mm2 in the various types of morphology does not significantly change with age. It is suggested to be likely that the aging process in the nitrergic neurons of the sSC does not lead to significant changes in the synthesis of NO from the constitutive NOS isoforms.  相似文献   

10.
Odor discrimination by G protein-coupled olfactory receptors   总被引:12,自引:0,他引:12  
The vertebrate olfactory system possesses a remarkable capacity to recognize and discriminate a variety of odorants by sending the coding information from peripheral olfactory sensory neurons in the olfactory epithelium to the olfactory bulb of the brain. The recognition of odorants appear to be mediated by a G protein-coupled receptor superfamily that consists of approximately 1% of total genes in vertebrates. Since the first discovery of the olfactory receptor gene superfamily in the rat, similar chemosensory receptors have been found in various species across different phyla. The functions of these receptors, however, had been uncharacterized until the recently successful functional expression and ligand screening of some olfactory receptors in various cell expression systems. The functional cloning of odorant receptors from single olfactory neurons allowed for the identification of multiple receptors that recognized a particular odorant of interest. Reconstitution of the odorant responses demonstrated that odorant receptors recognized various structurally-related odorant molecules with a specific molecular receptive range, and that odor discrimination is established based on a combinatorial receptor code model in which the identities of different odorants are encoded by a combination of odorant receptors. The receptor code for an odorant changes at different odorant concentrations, consistent with our experience that perceived quality of an odorant changes at different concentrations. The molecular bases of odor discrimination at the level of olfactory receptors appear to correlate well with the receptive field in the olfactory bulb where the input signal is further processed to create the specific odor maps.  相似文献   

11.
Crustaceans have been used extensively as models for studying the nervous system. Members of the Order Decapoda, particularly the larger species such as lobsters and crayfish, have large segmented abdomens that are positioned by tonic flexor and extensor muscles. Importantly, the innervation of these tonic muscles is known in some detail. Each abdominal segment in crayfish is innervated bilaterally by three sets of nerves. The anterior pair of nerves in each ganglion controls the swimmeret appendages and sensory supply. The middle pair of nerves innervates the tonic extensor muscles and the regional sensory supply. The superficial branch of the most posterior pair of nerves in each ganglion is exclusively motor and supplies the tonic flexor muscles of that segment. The extension and flexion motor nerves contain six motor neurons, each of which is different in axonal diameter and thus produces impulses of different amplitude. Motor programs controlling each muscle can be characterized by the identifiable motor neurons that are activated. Early work in this field discovered that specific central interneurons control the abdominal positioning motor neurons. These interneurons were first referred to as "command neurons" and later as "command elements." Stimulation of an appropriate command element causes a complex, widespread output involving dozens of motor neurons. The output can be patterned even though the stimulus to the command element is of constant interval. The command elements are identifiable cells. When a stimulus is repeated in a command element, from either the same individual or from different individuals, the output is substantially the same. This outcome depends upon several factors. First, the command elements are not only identifiable, but they make many synapses with other neurons, and the synapses are substantially invariant. There are separate flexion-producing and extension-producing command elements. Abdominal flexion-producing command elements excite other flexion elements and inhibit extensor command elements. The extension producing elements do the opposite. These interactions insure that interneurons of a particular class (flexion- or extension-producing) synaptically recruit perhaps twenty others of similar output, and that command elements promoting the opposing movements are inhibited. This strong reciprocity and the recruitment of similar command elements give a powerful motor program that appears to mimic behavior.  相似文献   

12.
Presynaptic inhibition of transmitter release from primary sensory afferents is a common strategy for regulating sensory input to the arthropod central nervous system. In the olfactory system, presynaptic inhibition of olfactory receptor neurons has been long suspected, but until recently could not be demonstrated directly because of the difficulty in recording from the afferent nerve terminals. A preparation using the isolated but intact brain of the spiny lobster in combination with voltage-sensitive dye staining has allowed stimulus-evoked responses of olfactory receptor axons to be recorded selectively with optical imaging methods. This approach has provided the first direct physiological evidence for presynaptic inhibition of olfactory receptor neurons. As in other arthropod sensory systems, the cellular mechanism underlying presynaptic afferent inhibition appears to be a reduction of action potential amplitude in the axon terminal. In the spiny lobster, two inhibitory transmitters, GABA and histamine, can independently mediate presynaptic inhibition. GABA- and histaminergic interneurons in the lobster olfactory lobe (the target of olfactory receptor neurons) constitute dual, functionally distinct inhibitory pathways that are likely to play different roles in regulating primary olfactory input to the CNS. Presynaptic inhibition in the vertebrate olfactory system is also mediated by dual inhibitory pathways, but via a different cellular mechanism. Thus, it is possible that presynaptic inhibition of primary olfactory afferents evolved independently in vertebrates and invertebrates to fill a common, fundamental role in processing olfactory information.  相似文献   

13.
The aim of this study was to investigate the effect of aging on glial cells and neurons from the superficial layers of the superior colliculus in rats. We used stereological methods to estimate the volume of the superficial layers, neuron size, and the number of neurons and glial cells in Wistar male rats aged 3, 24, 26, and 28 months. A 32.6% volume increase was found in the stratum griseum superficiale between the ages of 3 and 26 months, while in the 28-month-old animals a 19% decrease was observed. The stratum opticum did not show any changes in volume with age. Also, our analysis revealed a process of somatic and nuclear atrophy in the neurons of the superficial layers in animals aged 26 and 28 months. On the other hand, no statistically significant differences were found in the numbers of neurons. The number of glial cells in the stratum griseum superficiale showed an increase between the 3rd and 26th month, while the stratum opticum suffered no change.  相似文献   

14.
The CNS of the sea lamprey (Petromyzon marinus) contains giant, individually identifiable neurons that can be microinjected intracellularly in the living animal. We have used the unique accessibility of this system to investigate the role played by serine/threonine kinases and phosphatases in regulating cytoskeletal stability in identified reticulospinal neurons (ABCs) in situ. Injection of broad spectrum kinase and phosphatase inhibitors induce marked changes in ABC gross morphology and in the extent and morphology of sprouts induced by axotomy. The kinase inhibitor K-252a causes regenerating sprouts to be longer and narrower than those seen in control preparations, and significantly reduces the diameters of axon stumps; this latter effect is similar to the effect of microinjecting anti neurofilament (NF) antibodies. By contrast, the phosphatase inhibitor okadaic acid (OA) causes the selective disruption of axonal integrity, blocking axonal regeneration and causing axon stump retraction in axotomized ABCs. The microtubule (MT) disrupting drug colchicine has an effect similar but less marked than OA on ABC axonal morphology. Both OA and colchicine also induce the formation of large somatodendritic swellings in axotomized (but not intact) ABCs by 1-3 weeks post-injection. Immunocytochemical analyses indicate that both colchicine and OA treatments result in the destabilization of MTs and the phosphorylation of NFs, while OA induces the accumulation of phosphorylated tau protein in some dendritic swellings. Control injections of inactive substances have none of these effects. These results suggest that OA does not have its primary effect on NF assembly at the doses used, but may block axonal regeneration by inducing a prolonged disruption of axonal MTs, possibly via an indirect mechanism involving the hyperphosphorylation of tau and other MAPs. K-252a, on the other hand, may interfere with NF assembly and sidearm phosphorylation, thereby reducing NF transport into both axon stumps and sprouts and in turn reducing sprout diameter. The implications of these results for the respective roles of MTs, MAPs, and NFs in axonal regeneration in the vertebrate CNS are discussed.  相似文献   

15.
Due to its scale, complexity, and uncertainty of the processes, the management and control of automotive manufacturing systems have been very challenging. With the recent application of new technologies such as radio frequency identification (RFID) to manufacturing process, real-time information has become available in manufacturing systems through IT infrastructures. It is expected that RFID-based real-time information will increase timeliness and efficiency in decision making and drastically reduce uncertainty. That, in turn, will enhance both productivity and quality. This paper presents an advanced RFID application for automotive assembly processes, specifically, dynamic material dispatching (e.g., auto assembly parts). The application is uniquely advanced in that it integrates RFID technology with a real-time decision support system to ensure the accurate and efficient delivery of auto parts to mixed-product assembly lines. In this application, we have described the problem as a mixed-integer programming model, proposed a heuristic algorithm that incorporates the available RFID information, and assessed the value of RFID through a scenario-based analysis. We hope this paper may help contribute to a virtuous cycle of RFID innovation and applications in the manufacturing sector.  相似文献   

16.
The morphological development of the vomeronasal organ (VNO) and accessory olfactory bulb (AOB) of the sheep from anlage to birth were studied by classical and histochemical methods using embryos and fetuses obtained from an abattoir with ages estimated from crown-to-rump length. Both VNO and AOB developed in a biologically logical sequence and completed their morphological development around day 98, at entry into the last third of the gestation period. A lectin with specificity for oligomeric N-acetylglucosamine labeled the sensory epithelium of the VNO, the vomeronasal nerves, and the nervous and glomerular layers of the AOB before birth. These results suggest that the vomeronasal system, which is well developed and functional in adult sheep, may be able to function at or even before birth in these animals (whereas in rodents, for example, this is precluded by the AOB not completing its development until after birth).  相似文献   

17.
Up to now, the cause of most types of headaches is unknown. Why headache starts or why it fades away during hours or a few days is still a mystery. This phenomenon makes headache unique compared to other pain states. For long it has been known that during headache sensory structures in the meninges are activated. But it was not until the last two decades that scientists investigated the physiology of the sensory innervation of the meninges. Animal models and in vitro preparations have been developed to get access to the meninges and to determine the response properties of meningeal afferents. Although animals hardly can tell their pain, blood pressure measurements and observations of behaviour in two models of headache suggest that such animal models are valid and may add remarkable information to our understanding of human headache. Since chemicals and endogenous inflammatory mediators may alter sensory thresholds and responsiveness of neurons, they are putative key molecules in triggering pathophysiological sensory processing. This review briefly summarizes what is known about the chemosensitivity of meningeal innervation.  相似文献   

18.
Fructose‐1,6‐bisphosphatase has been studied in adult mouse brain of different ages using an antibody directed against the liver isoform. The presence of liver fructose‐1,6‐bisphosphatase in cerebellum, cerebral cortex, and hippocampus was assayed using Western blot and different immunocytochemical techniques. Immunocytochemistry with peroxidase reaction product was used to locate fructose‐1,6‐bisphosphatase in both neurons and astrocytes in the same areas, as well as in the rest of the brain, at light and electron microscope levels. Double immunofluorescence with neuronal or astrocytic markers confirmed the neuronal and astrocytic location of fructose‐1,6‐bisphosphatase in confocal microscope images. At the subcellular level, fructose‐1,6‐bisphosphatase was located in the nuclear and cytoplasmic compartments of both neurons and astrocytes, at all ages studied. Ultrastructurally, immunostaining appeared as small patches in the nucleus and the cytosol. In addition, immunostaining was present over the outer mitochondrial membrane, the plasma membrane, and the membranes of the rough endoplasmic reticulum and nuclear envelope, but not over Golgi membranes. In the neuropil fructose‐1,6‐bisphosphatase was located in dendritic spines, as well as in abundant astrocytic processes that, in some cases, surrounded immunopositive synapses. The possible role of fructose‐1,6‐bisphosphatase in neurons and astrocytes is discussed. Microsc. Res. Tech., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
As computer-integrated manufacturing facilities continue to grow in complexity, increasingly sophisticated computer based sensory systems will be required to carry out functions such as robot guidance, tool wear monitoring, and product inspection. This paper reviews progress in the development of advanced computer vision systems at the National Engineering Laboratory, UK and describes the design of hardware and software for two dimensional image analysis. A component recognition system for robotic applications is detailed and a novel structured light technique for three dimensional component analysis is described. Part II, which contains several case histories, will be published in the November issue.  相似文献   

20.
A study of the peripheral olfactory organ, with special attention to the olfactory epithelium, has been carried out in the guppy (Poecilia reticulata). Guppy is well known to have a vision-based sexual behavior. The olfactory chamber caudally opens directly in an accessory nasal sac, which is bent medially and gives rise to two recesses that can be considered secondary accessory nasal sacs, antero-medial and postero-medial, respectively. The sensory epithelium, which lines only the medial wall of the nasal cavity, is basically flat rising in a very low lamella only in the posterior part. The olfactory receptors are not evenly distributed in the olfactory mucosa, but aggregate in shallow folds separated by epithelial cells with evident microridges. Ciliated olfactory sensory neurons and microvillous olfactory sensory neurons are clearly identified by transmission electron microscopy (TEM). Scarce crypt olfactory neurons are found throughout the sensory folds. The nasal sacs indicates the capacity to regulate the flow of odorant molecules over the sensory epithelium, possibly through a pump-like mechanism associated with gill ventilation. The organization of the olfactory organ in guppy is simple and reminds what is found in early posthatching stages of fish which at the adult state have a well developed olfactory organ. This simple organization supports the idea that the guppy rely on olfaction less than other fish species provided with more extended olfactory receptorial surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号