首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new boundary-integral formulation is proposed to analyse the heat transfer in complex three-dimensional geometries. One example of such geometry is the die sets in the injection moulding process. Networks of cooling conduits within the mould and the closely spaced die surfaces require special attention both in formulation and numerical treatment of the integral equations. The proposed formulation couples the boundary formula, the gradient of the boundary formula and the exterior formula. The derivation of the integral equations is presented here along with an efficient method for integration of some of the kernels in these equations and a semi-analytical procedure for the integration of the highly singular integrands which result from differentiating the boundary formula. Although the techniques introduced here are applied to a particular problem in heat transfer, their potential application is much broader.  相似文献   

2.
In some steady heat conduction problems in special geometries which consist of a closely spaced surface and circular holes in an infinite domain, thermal system designers may want to optimize the configuration of circular holes in terms of their radii and locations to achieve the goal of uniform temperature distribution over a closely spaced surface. In this paper, an efficient optimization procedure for this kind of problem is proposed utilizing (i) the special boundary element analysis, (ii) the corresponding design sensitivity analysis and (iii) the CONMIN algorithm. Three sample problems were solved to demonstrate the efficiency and the usefulness of the proposed optimization procedure. Some industrial engineering examples of such problems can be found in the injection molding process, the compression molding process, and so on. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
Used in concert with the Kirchhoff transformation, implicit differentiation of the discretized boundary integral equations governing the conduction of heat in solids with temperature dependent thermal conductivity is shown to generate an accurate and economical approach for computation of shape sensitivities. For problems with specified temperature and heat flux boundary conditions, a linear problem results for both the analysis and sensitivity analysis. In problems with either convection or radiation boundary conditions, a non-linear problem is generated. Several iterative strategies are presented for the solution of the resulting sets of non-linear equations and the computational performances examined in detail. Multi-zone analysis and zone condensation strategies are demonstrated to provide substantive computational economies in this process for models with either localized non-iinear boundary conditions or regions of geometric insensitivity to design variables. A series of non-linear example problems is presented that have closed form solutions. Exact anaytical expressions tor the shape sensitivities associated with these problems are developed and these are compared with the sensitivities computed using the boundary element formulation.  相似文献   

4.
Implicit differentiation of the discretized boundary integral equations governing the conduction of heat in three dimensional (3D) solid objects, subjected to nonlinear boundary conditions, and with temperature dependent material properties, is shown to generate an accurate and economical approach for the computation of shape sensitivities. The theoretical formulation for primary response (surface temperature and normal heat flux) sensitivities and secondary response (surface tangential heat flux components and internal temperature and heat flux components) sensitivities is given. Iterative strategies are described for the solution of the resulting sets of nonlinear equations and computational performances examined. Multi-zone analysis and zone condensation strategies are demonstrated to provide substantial computational economies in this process for models with either localized nonlinear boundary conditions or regions of geometric insensitivity to design variables. A series of nonlinear sensitivity example problems are presented that have closed form solutions. Sensitivities computed using the boundary formulation are shown to be in excellent agreement with these exact expressions.  相似文献   

5.
A generalized formulation of the shape design sensitivity analysis for two-dimensional steady-state thermal conduction problem as applied to zoned-inhomogeneous solids is presented using the boundary integral and the adjoint variable method. Shape variation of the external and zone-interface boundary is considered. Through an analytical example, it is proved that the derived sensitivity formula coincides with the analytic solution. In numerical implementation, the primal and adjoint problems are solved by the boundary element method. Shape sensitivity is numerically analyzed for a compound cylinder, a thermal diffuser and a cooling fin problem, and its accuracy is compared with that by numerical differentiation. The sensitivity formula derived is incorporated to a nonlinear programming algorithm and optimum shapes are found for the thermal diffuser and the cooling fin problem.  相似文献   

6.
Abstract— The subject of hypersingular boundary integral equations is a rapidly developing topic due to the advantages which this kind of formulation offers compared to the standard boundary integral method. The hypersingular formulation is particularly well suited for fracture mechanics problems, where there are important gradients of the stress field and singularities. This formulation for time domain antiplane problems has been recently addressed by the authors and in the present paper, the formulation for time domain plane problems is presented and applied for the first time. A mixed Boundary Element approach based on the standard integral equation and the hypersingular integral equation is developed. The mixed formulation allows for a very simple discretization of the problem, where no subregion is needed. Conforming quadratic elements are used for the crack and the external boundaries. The hypersingular integral equation is used for collocation points within the crack elements, while the standard integral representation is used for the external boundaries. Several examples with different crack geometries are studied to illustrate the possibilities of the method. The Stress Intensity Factor (S.I.F.) is very accurately computed from the crack tip opening displacements along the crack tip element. The results show that the proposed approach for S.I.F. evaluation is simple and produces accurate solutions.  相似文献   

7.
In this paper a sensitivity formulation using the boundary element method (BEM), for problems involving contact is presented. The proposed formulation is based on the implicit differentiation method (IDM), where the boundary integral equations are differentiated analytically with respect to the design variables. In the proposed formulation the design variables are defined in terms of the normal gap between the contact bodies. The analysis demonstrates that the proposed method is accurate and robust, as it does not resolve the whole system. The proposed method can be used for evaluating the sensitivities in any shape-optimisation problem involving contact.  相似文献   

8.
注塑成型冷却过程的数值模拟   总被引:5,自引:0,他引:5  
采用循环平均假设,忽略模壁温度的周期变化,将模具的传热简化为三维稳态热传导总是,考虑到注射模的结构特点(型腔为狭缝面,冷却孔细长),推导出求解其温度场的边界积分方程;注塑件的传热简化为一维瞬态热传导,给出确定其冷却时间及表面循环平均热流的方法;通过模具及塑件传热的耦合迭代分析,使模具-塑料件界面的温度和热流满足相容条件,最终确定模具型腔的温度分布及塑件的冷却时间。最后通过一个例子说明数值模拟在冷却系统设计中的应用。  相似文献   

9.
In this paper an integral equation formulation is proposed for the analysis of orthotropic potential problems. The two primary integral equations of the method are derived from the original governing differential equation firstly by rewriting it in a slightly different form and then applying the direct boundary element method formulation. The solution procedure is based on the use of the fundamental solutions for the isotropic potential case and special attention is given to the differentiation of a singular integral which yields an additional term as well as to the evaluation of the resulting Cauchy principal value integral. A simple discretization for the boundary and its interior domain is adopted in order to express the primary integral equations of the method in matrix form. Three examples are presented, the results of which illustrate the satisfactory accuracy of the method. The main feature of the proposed formulation is its generality, which makes possible its direct extension to solve such as heat conduction or subsurface flow in anisotropic media and, foremost, to orthotropic and anisotropic elasticity or elastoplasticity.  相似文献   

10.
This paper presents a wideband fast multipole boundary element approach for three dimensional acoustic shape sensitivity analysis. The Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem associated with the conventional boundary integral equation method in solving exterior acoustic wave problems. The sensitivity boundary integral equations are obtained by the direct differentiation method, and the concept of material derivative is used in the derivation. The iterative solver generalized minimal residual method (GMRES) and the wideband fast multipole method are employed to improve the overall computational efficiency. Several numerical examples are given to demonstrate the accuracy and efficiency of the present method.  相似文献   

11.
Fracture analysis of cracks in magneto-electro-elastic solids by the MLPG   总被引:2,自引:0,他引:2  
A meshless method based on the local Petrov–Galerkin approach is proposed for crack analysis in two-dimensional (2-D) and three-dimensional (3-D) axisymmetric magneto-electric-elastic solids with continuously varying material properties. Axial symmetry of geometry and boundary conditions reduces the original 3-D boundary value problem into a 2-D problem in axial cross section. Stationary and transient dynamic problems are considered in this paper. The local weak formulation is employed on circular subdomains where surrounding nodes randomly spread over the analyzed domain. The test functions are taken as unit step functions in derivation of the local integral equations (LIEs). The moving least-squares (MLS) method is adopted for the approximation of the physical quantities in the LIEs. The accuracy of the present method for computing the stress intensity factors (SIF), electrical displacement intensity factors (EDIF) and magnetic induction intensity factors (MIIF) are discussed by comparison with numerical solutions for homogeneous materials.  相似文献   

12.
A meshless method based on the local Petrov–Galerkin approach is proposed for plate bending analysis with material containing functionally graded magnetoelectroelastic properties. Material properties are considered to be continuously varying along the plate thickness. Axial symmetry of geometry and boundary conditions for a circular plate reduces the original 3D boundary value problem into a 2D problem in axial cross section. Both stationary and transient dynamic conditions for a pure mechanical load are considered in this article. The local weak formulation is employed on circular subdomains in the axial cross section. Subdomains surrounding nodes are randomly spread over the analyzed domain. The test functions are taken as unit step functions in derivation of the local integral equations (LIEs). The moving least-squares (MLS) method is adopted for the approximation of the physical quantities in the LIEs. After performing the spatial integrations, one obtains a system of ordinary differential equations for certain nodal unknowns. That system is solved numerically by the Houbolt finite-difference scheme as a time-stepping method.  相似文献   

13.
In this paper, a semi-analytical approach for the eigenproblem of circular plates with multiple circular holes is presented. Natural frequencies and modes are determined by employing the null-field integral formulation in conjunction with degenerate kernels, tensor rotation and Fourier series. In the proposed approach, all kernel functions are expanded into degenerate (separable) forms and all boundary densities are represented by using Fourier series. By uniformly collocating points on the real boundary and taking finite terms of Fourier series, a linear algebraic system can be constructed. The direct searching approach is adopted to determine the natural frequency through the singular value decomposition (SVD). After determining the unknown Fourier coefficients, the corresponding mode shape is obtained by using the boundary integral equations for domain points. The result of the annular plate, as a special case, is compared with the analytical solution to verify the validity of the present method. For the cases of circular plates with an eccentric hole or multiple circular holes, eigensolutions obtained by the present method are compared well with those of the existing approximate analytical method or finite element method (ABAQUS). Besides, the effect of eccentricity of the hole on the natural frequency and mode is also considered. Moreover, the inherent problem of spurious eigenvalue using the integral formulation is investigated and the SVD updating technique is adopted to suppress the occurrence of spurious eigenvalues. Excellent accuracy, fast rate of convergence and high computational efficiency are the main features of the present method thanks to the semi-analytical procedure.  相似文献   

14.
A general shape design sensitivity analysis approach, different from traditional sensitivity methods is developed for three-dimensional elastostatic problems. The boundary integral design sensitivity formulation is given in order to obtain traction, displacement and equivalent stress sensitivities which are required for design optimization. Those integral equations are derived analytically by differentiation with respect to the normal to the surface at design variable points. Subdivision of boundary elements into sub-elements and rigid body translation methods are employed to deal with singularities that occur during the numerical discretization of the domain. Four different examples are demonstrated to show the accuracy of the method. The boundary integral sensitivity results are compared with the finite difference sensitivity results. Excellent agreement is achieved between the two methods. © 1997 by John Wiley & Sons, Ltd.  相似文献   

15.
For a potential problem, the boundary integral equation approach has been shown to yield a nonunique solution when the geometry is equal to a degenerate scale. In this paper, the degenerate scale problem in boundary element method (BEM) is analytically studied using the degenerate kernels and circulants. For the circular domain problem, the singular problem of the degenerate scale with radius one can be overcome by using the hypersingular formulation instead of the singular formulation. A simple example is shown to demonstrate the failure using the singular integral equations. To deal with the problem with a degenerate scale, a constant term is added to the fundamental solution to obtain the unique solution and another numerical example with an annular region is also considered.  相似文献   

16.
This paper presents a new inverse analysis approach for identifying material properties and unknown geometries for multi-region problems using the Boundary Element Method (BEM). In this approach, the material properties and coordinates of an unknown region boundary are taken as the optimization variables, and the sensitivity coefficients are computed by the Complex-Variable-Differentiation Method (CVDM). Due to the use of CVDM, the sensitivity coefficients can be accurately determined in a way that is as simple to use as the Finite Difference Method (FDM) and an inverse analysis for a complex composite structure can be easily performed through a similar procedure to the direct computation. Although basic integral equations are presented for heat conduction problems, the application of the proposed algorithm to other problems, such as elastic problems, is straightforward. Two numerical examples are given to demonstrate the potential of the proposed approach.  相似文献   

17.
This paper reports on some problems that can arise with the use of regularized derivative boundary integral equations. It concentrates on developing a formulation for the simple Laplace equation using a cubic Hermite interpolation and shows how certain combinations of derivative and conventional boundary integral equations can result in a solution scheme severely lacking in stability. With some simple two- and three-dimensional geometries, the derivative equations on their own do not provide enough information to solve a Dirichlet problem. Even combinations of the conventional and derivative equations fail for some simple geometries. We conclude that the only consistently successful combination is that of the conventional equation with the tangential derivative equation, which showed cubic convergence of results with mesh refinement. Numerical results are presented for this scheme in both two and three dimensions.  相似文献   

18.
The structural design sensitivity analysis of a two-dimensional continuum using conforming (continuous) boundary elements is investigated. Implicit differentiation of the discretized boundary integral equations is performed to obtain design sensitivities in an efficient manner by avoiding the factorization of the perturbed matrices. A singular formulation of the boundary element method is used. Implicit differentiation of the boundary integral equations produces terms that contain derivatives of the fundamental solutions employed in the analysis. The behaviour of the singularity of these derivatives of the boundary element kernel functions with respect to the design variables is investigated. A rigid body motion technique is presented to obtain the singular terms in the resulting sensitivity matrices, thus avoiding the problems associated with their numerical integration. A formulation for obtaining the design sensitivities of the continua under body forces of the gravitational and centrifugal types is also presented. The design sensitivity results are seen to be of the same order of accuracy as the boundary element analysis results. Numerical data comparing the performance of conforming and non-conforming formulations in the calculation of design sensitivities are also presented. The accuracy of the present results is demonstrated through comparisons with existing analytical results.  相似文献   

19.
The present paper addresses several BIE-based or BIE-oriented formulations for sensitivity analysis of integral functionals with respect to the geometrical shape of a crack. Functionals defined in terms of integrals over the external boundary of a cracked body and involving the solution of a frequency-domain boundary-value elastodynamic problem are considered, but the ideas presented in this paper are applicable, with the appropriate modifications, to other kinds of linear field equations as well. Both direct differentiation and adjoint problem techniques are addressed, with recourse to either collocation or symmetric Galerkin BIE formulations. After a review of some basic concepts about shape sensitivity and material differentiation, the derivative integral equations for the elastodynamic crack problem are discussed in connection with both collocation and symmetric Galerkin BIE formulations. Building upon these results, the direct differentiation and the adjoint solution approaches are then developed. In particular, the adjoint solution approach is presented in three different forms compatible with boundary element method (BEM) analysis of crack problems, based on the discretized collocation BEM equations, the symmetric Galerkin BEM equations and the direct and adjoint stress intensity factors, respectively. The paper closes with a few comments.  相似文献   

20.
In this paper, a special purpose algorithm for solving large eigenvalue problems based on the Lanczos method is successfully applied to an engineering problem: the electromagnetic analysis and design of passive waveguide devices. For dealing with such complex problems, the boundary integral‐resonant mode expansion (BI‐RME) technique has been recently proposed. This technique solves integral equations (IEs) through the well‐known method of moments (MoM), thus leading to structured eigenvalue problems. These problems frequently become very large when solving complex arbitrary geometries with high accuracy. In such cases, the eigenvalue problem cannot be efficiently solved with standard methods by means of personal computers, essentially due to CPU time and memory allocation requirements. In this paper, we propose an alternative technique, based on the Lanczos method, for the fast and accurate solution of large BI‐RME generalized eigenvalue problems. The novel theoretical aspects of this approach, as well as the impacton the original BI‐RME formulation, are described. Comparative benchmarks are also successfully presented for the full‐wave analysis and design of real passive microwave devices. Copyright © 2005 John Wiley Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号