首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the nucleotide sequence of a DNA fragment of 12 325 base pairs from the left arm of the Saccharomyces cerevisiae chromosome VII. Inspection of the coding capacity revealed 11 open reading frames (ORFs) longer than 100 amino acids. Five ORFs are significantly homologous to known proteins. The region encoding ORF G2985 corresponds (100%) to the gene encoding the yeast TATA binding protein-associated factor TAFII60. The G3075 ORF is 47·8% identical to the hypothetical yeast protein YB88. G3080 shows 36·7% identity to the eel calmodulin. G3085 shows 94·9% identity with the published sequence of the quadruplex DNA binding protein G4p1. G3090 reveals 46·7% identity with the probable glucose transport protein yBR1625. The DNA sequence has been submitted to the EMBL data library under Accession Number X97644. © 1997 by John Wiley & Sons, Ltd.  相似文献   

2.
We have cloned and sequenced a Candida albicans gene (SSB1) encoding a potential member of the heat-shock protein seventy (hsp70) family. The protein encoded by this gene contains 613 amino acids and shows a high degree (85%) of sequence identity to the ssb subfamily (ssb1 and ssb2) of the Saccharomyces cerevisiae hsp70 family. The transcribed mRNA (2·1 kb) is present in similar amounts both in yeast and germ tube cells of C. albicans. The sequence data has been deposited in the GenBank data library under the Accession Number X97723. © John Wiley & Sons, Ltd.  相似文献   

3.
The gene encoding centromere binding factor 3d (CBF3D) of the human pathogenic yeast Candida glabrata has been isolated by hybridization of Saccharomyces cerevisiae CBF3D (ScCBF3D) DNA to a C. glabrata partial genomic library. Sequence analysis revealed a 540 bp open reading frame encoding a protein of 179 amino acids with a calculated molecular mass of 20·9 kDa. The amino acid sequence is highly homologous (78·6% identity) to ScCbf3d and 48·3% identical to the human homologue p19 (SKP1). Southern blot analysis indicates that CgCbf3d is encoded by an unique nuclear gene. The cloned CgCBF3D gene can functionally substitute the S. cerevisiae homologue in a S. cerevisiae CBF3D‐deletion mutant. The GenBank Accession No. for this gene is AF 072472. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
Candida apicola belongs to a group of yeasts producing high amounts of surface-active extracellular glycolipids consisting of sophorose and long-chain-ω- and (ω-1)-hydroxy fatty acids. The involvement of cytochrome P450 in the synthesis of sophorose lipid by the hydroxylation of long-chain fatty acids was suggested from a simultaneous increase of cellular P450 content. Hydroxylation studies indicated the existence of multiple P450 forms capable of hydroxylating not only long-chain fatty acids, but also n-alkanes. In this report, two different P450 DNA fragments amplified in a polymerase chain reaction with heterologous primers and chromosomal DNA of Candida apicola were used as homologous probes for the isolation of full-length clones from a genomic library. The open reading frames of both genes encode proteins of 519 amino acids with calculated molecular weights of 58,656 and 58,631, respectively, that contain N-terminal membrane anchor sequences and hallmark residues, in common with other eukaryotic P450s. The deduced amino acid sequences of the C. apicola P450 genes are 84·4% identical. They share 34·5 to 44·1% identity with the proteins of the yeast family CYP52 and about 25% identity with fatty acid hydroxylases of higher eukaryotes (family CYP4A) and of Bacillus megaterium (CYP102). Southern hybridization experiments revealed the existence of further P450-related genes in C. apicola. According to the P450 nomenclature system, the cloned genes were named CYP52E1 and CYP52E2, establishing a new subfamily in yeast family CYP52. The sequences were deposited in the EMBL/GenBank Library under the Accession Numbers X76225 and X87640.  相似文献   

5.
The Pichia pastoris TRP1 and HIS3 genes were cloned by complementation of the Saccharomyces cerevisiae trp1 and his3 mutants, respectively, and their nucleotide sequence was determined. The P. pastoris TRP1 gene includes an open reading frame (ORF) of 714 nucleotides corresponding to a polypeptide of 237 amino acids whose sequence shares about 40% identity with that of TRP1 encoding proteins in other yeast species. DNA sequencing showed that an ORF of 858 nucleotides, encoding a protein of 285 amino acids with high homology to inorganic pyrophosphatases (IPP1), is located downstream of the P. pastoris TRP1 gene. Both genes converge in this chromosomal region, showing a genetic organization analogous to that found in the Kluyveromyces lactis genome. The P. pastoris HIS3 gene possesses an ORF of 675 nucleotides, encoding a polypeptide of 224 amino acids which shows 74·1% identity to the homologous S. cerevisiae protein. The hexameric consensus GCN4 binding sequence (TGACTC), characteristic of many amino acid biosynthetic genes, is present in the promoter region. The TRP1 and IPP1 sequences were deposited in the EMBL databank under Accession Number AJ001000. The Accession Number of the HIS3 gene is U69170. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
An ADE2 genomic clone from the pathogenic fungus, Candida albicans, was isolated by complementation of an Escherichia coli purK mutant and the gene was analysed by DNA sequencing. A 1707 bp open reading frame was identified encoding a polypeptide of 569 amino acids with significant homology to all the known yeast ADE2 genes. Sequence homology to both the E. coli purE and purK genes suggests that the C. albicans ADE2 gene is the result of an evolutionary fusion. The amino-acid sequence comparison showed that the N-terminal domain of the Ade2 protein has a 52·5% identity to PurK, whereas the C-terminal domain has a distinct 64·3% identity to PurE. In order to establish the functional relationship of these two regions, deletion mutants of the Ade2 protein were prepared by recombinant expression of the functional domains, which were tested by complementation of their respective E. coli auxotrophs. The sequence described in this paper has been deposited in the EMBL data library under the Accession Number U69606. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
We have cloned and sequenced the hcs gene, which is thought to encode a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase consisting of 447 amino acids, from the fission yeast Schizosaccharomyces pombe. The predicted amino acid sequence of the hcs product of S. pombe has homology with the HMG-CoA synthase of rat (47·8%), chicken (49·2%), hamster (47·1%) and human cells (46·9%). One of the hcs genes was replaced with a marker gene in the diploid cell. No viable hcs-disrupted haploid was isolated after tetrad dissection, suggesting that the hcs gene is essential for growth. However the hcs-defective mutant could be grown on a medium containing 5 mg/ml mevalonate. These results strongly support that the hcs gene encodes HMG-CoA synthase and S. pombe contains a single copy of the hcs gene. The sequence of the hcs gene has been entered into the public data libraries under Accession Number U32187.  相似文献   

8.
A gene homologous to Saccharomyces cerevisiae PMR1 has been cloned in the methylotrophic yeast Hansenula polymorpha. The partial DNA fragment of the H. polymorpha homologue was initially obtained by a polymerase chain reaction and used to isolate the entire gene which encodes a protein of 918 amino acids. The putative gene product contains all ten of the conserved regions observed in P-type ATPases. The cloned gene product exhibits 60·3% amino acid identity to the S. cerevisiae PMR1 gene product and complemented the growth defect of a S. cerevisiae pmr1 null mutant in the EGTA-containing medium. The results demonstrate that the H. polymorpha gene encodes the functional homologue of the S. cerevisiae PMR1 gene product, a P-type Ca2+-ATPase. The DNA sequence of the H. polymorpha homologue has been submitted to GenBank with the Accession Number U92083. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
We have sequenced on both strands a 40,257 bp fragment located near the left telomere of chromosome X of Saccharomyces cerevisiae. The sequenced segment contains 21 open reading frames (ORFs) at least 100 amino acids long. Five of the ORFs correspond to known amino acid sequences: two hypothetical proteins in the subtelomeric Y′ repeat region of 65·4 and 12·8 KDa, the cytochrome B pre-mRNA processing CBP1 protein, the mitochondrial nuclease NUC1 and the CRT1 protein. Of the 16 remaining ORFs, eight show highest homologies with the S. cerevisiae hexose transporters family (two ORFs), the yeast α-glucosidase (two ORFs), the yeast PEP1 precursor, the Escherichia coli galactoside O-acetyltransferase, the S. cerevisiae 137·7 KDa protein located in the Y′ region and a protein of unknown function of Schizosaccharomyces pombe. Finally, eight of the ORFs exhibit no significant similarity with any amino acid sequences described in data banks. DNA sequence comparison has revealed the presence of different repeated elements characteristic of yeast chromosome ends. Disruption studies have been performed on two ORFs encoding putative proteins of unknown function. The sequence has been entered in the EMBL Data Library under Accession Number Z34098.  相似文献   

10.
The DEX gene encoding an extracellular dextranase was isolated from the genomic DNA library of Penicillium minioluteum by hybridization using the dextranase cDNA as a probe. Comparison of the gene and cDNA sequences revealed that the DEX gene does not contain introns. Amino acid sequences comparison of P. minioluteum dextranase with other reported dextranases reveals a significant homology (29% identity) with a dextranase from Arthrobacter sp. CB-8. The DEX gene fragment encoding a mature protein of 574 amino acids was expressed in the methylotrophic yeast Pichia pastoris by using the SUC2 gene signal sequence from Saccharomyces cerevisiae under control of the alcohol oxidase-1 (AOX1) promoter. Over 3·2g/l of enzymatically active dextranase was secreted into the medium after induction by methanol. The yeast product was indistinguishable from the native enzyme in specific activity and the N-terminus of both proteins were identical.  相似文献   

11.
12.
13.
Inspection of the complete Saccharomyces cerevisiae genome sequence and analysis of the actin-related proteins (ARPs) found therein revealed seven proteins, in addition to the previously designated actin-related proteins Arp1, Arp2 and Arp3, which contained substantial blocks of conservation relative to a chosen sub-set of actins. We have ordered the new ARPs relative to this group of actins and propose to name the more distantly related ARP members, according to their amino acid identity and similarity, Arp4–Arp10. Most of these proteins appear to represent the first example of new classes of ARPs, each of which may have specific localization(s) and cellular function(s). Recently reported ARPs from other species have also been included in the phylogenetic tree derived from the overall alignment of 29 actins and 28 ARPs. © 1997 by John Wiley & Sons, Ltd.  相似文献   

14.
The ham1 mutant of yeast Saccharomyces cerevisiae is sensitive to the mutagenic and lethal effects of the base analog, 6-N-hydroxylaminopurine (HAP). We have isolated a clone from a centromere-plasmid-based genomic library complementing HAP sensitivity of the ham1 strain. After subcloning, a 3·4 kb functional fragment was sequenced. It contained three open reading frames (ORFs) corresponding to proteins 353, 197 and 184 amino acids long. LEU2+ disruptions of the promoter and N-terminal part of the gene coding 197 amino acids long protein led to moderate and strong sensitivity to HAP, respectively, and were allelic to the original ham1-1 mutation. Thus this ORF represents the HAM1 gene. The deduced amino acid sequence of HAM1 protein was not similar to any protein sequence of the SwissProt database. The HAM1 gene was localized on the right arm of chromosome X between cdc8 and cdc11. Spontaneous mutagenesis was not affected by the ham1::LEU2 disruption mutation.  相似文献   

15.
We have sequenced a gene on the right arm near the telomere of chromosome II of Saccharomyces cerevisiae which codes for a putative P-type cation-transporting ATPase (PCA1). The gene codes for a 1216 amino acids protein. The PCA1 gene expresses a 3·5 kb message in both haploid and diploid cells when grown in glucose-based rich medium YPD. The gene product is most similar at the C-terminal region to a human copper-transporting ATPase and Enterococcus hirae copper-transporting ATPases and also an N-terminal dithiol region that was proposed to be a ‘metal-binding motif’. Cells lacking PCA1 display no obvious phenotype when tested under standard conditions; whereas they cease growth much earlier than the isogenic wild-type cells in a minimal medium with high copper concentration. Overexpression of PCA1 under GAL1/10 promoter in yeast cells causes poor growth. We also show that yeast strains carrying PCA1 in multiple copies grow slower than isogenic wild-type strains in a minimal synthetic medium containing 0·3 mM-CuSO4. The sequence has been deposited in the EMBL data library under Accession Number Z29332.  相似文献   

16.
17.
The ILV1 gene of the yeast Arxula adeninivorans LS3 (AILV1) has been cloned from a genomic library, characterized and used as an auxotrophic selection marker for transformation of plasmids into this yeast. One copy of the gene is present in the Arxula genome, comprising 1653 bp and encoding 550 amino acids of the threonine deaminase. The protein sequence is similar (60·55%) to that of the threonine deaminase from Saccharomyces cerevisiae encoded by the gene ILV1. The protein is enzymatically active during the whole period of cultivation, up to 70 h. Maximal activities, as well as protein concentrations of this enzyme, were achieved after cultivation times of 20–36 h. The AILV1 gene is a suitable auxotrophic selection marker in transformation experiments using an Arxula adeninivorans ilv1 mutant and a plasmid containing this gene, which is fused into the 25S rDNA of Arxula adeninivorans. One to three copies of the linearized plasmid were integrated into the 25S rDNA by homologous recombination. Transformants resulting from complementation of the ilv1 mutation can be easily and reproducibly selected and in addition are mitotically stable. Therefore, the described system is preferred to the conventional selection for hygromycin B resistance. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
We have sequenced two segments containing a total of 51·6 kb of the left arm from chromosome XI of Saccharomyces cerevisiae. The first segment of 38·5 kb contains 18 open reading frames (ORFs) of more than 100 amino acid residues. Five ORFs encode known yeast genes, including the fatty acid synthase gene (FAS1). Three new yeast genes were discovered with homologies to non-yeast genes and ten new genes without homologies to any known sequences. The second segment of 13 kb contains five ORFs with two known yeast genes and three unknown genes. The sequences from cosmid pUKG041 were obtained entirely with the walking primer strategy resulting in a very low overall sequence redundancy of 2·8 and an average reading length of 443 bases.  相似文献   

19.
The nucleotide sequence of 23·6 kb of the right arm of chromosome XIV is described, starting from the centromeric region. Both strands were sequenced with an average redundancy of 4·87 per base pair. The overall G+C content is 38·8% (42·5% for putative coding regions versus 29·4% for non-coding regions). Twelve open reading frames (ORFs) greater than 100 amino acids were detected. Codon frequencies of the twelve ORFs agree with codon usage in Saccharomyces cerevisiae and all show the characteristics of low level expressed genes. Five ORFs (N2019, N2029, N2031, N2048 and N2050) are encoded by previously sequenced genes (the mitochondrial citrate synthase gene, FUN34, RPC34, PRP2 and URK1, respectively). ORF N2052 shows the characteristics of a transmembrane protein. Other elements in this region are a tRNAPro gene, a tRNAAsn gene, a τ34 and a truncated δ34 element. Nucleotide sequence comparison results in relocation of the SIS1 gene to the left arm of the chromosome as confirmed by colinearity analysis. The nucleotide sequence data reported in this paper will appear in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession number X77395.  相似文献   

20.
The components of malt sprouts were effectively separated by manual winnowing into acrospires (15·3%), rootlets (40·1%) and husks (43·7%). The bitter taste was located in the acrospires. Percent recovery of protein and fibre was, respectively, 95·2 and 87·2 of malt sprouts. The acrospires were rich in protein (30·3%) and sugars (45·7%) but low in calcium (1·94 g kg−1), fibre content (4·6%) and essential amino acids. They had moderate functional properties. The rootlets were rich in calcium (19·9 g kg−1) and in protein (31·9%), which had a good nutritive value (low in phytic acid and polyphenols content). They had a moderate fibre content (10·7%). Consequently, they had the highest water absorption, oil absorption and emulsification capacities. The rootlets had relatively low foam capacity but the highest foam stability. The husks were rich in fibre content (25%) but moderate in protein content (12·4%), which was rich in essential amino acids. The husks were relatively low in calcium (11·83 g kg−1) and phosphorus (6·53 g kg−1) contents and in vitro protein digestibility (68·9%). Their functional properties were influenced by high fibre and moderate protein contents. The first limiting amino acids were sulphur-containing ones in the malt sprouts, the acrospires and the rootlets, but it was leucine in the husks. © 1997 SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号