首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Spin-polarized transport in ferromagnetic tunnel junctions, characterized by tunnel magnetoresistance, has already been proven to have great potential for application in the field of spintronics and in magnetic random access memories. Until recently, in such a junction the insulating barrier played only a passive role, namely to facilitate electron tunnelling between the ferromagnetic electrodes. However, new possibilities emerged when ferroelectric materials were used for the insulating barrier, as these possess a permanent dielectric polarization switchable between two stable states. Adding to the two different magnetization alignments of the electrode, four non-volatile states are therefore possible in such multiferroic tunnel junctions. Here, we show that owing to the coupling between magnetization and ferroelectric polarization at the interface between the electrode and barrier of a multiferroic tunnel junction, the spin polarization of the tunnelling electrons can be reversibly and remanently inverted by switching the ferroelectric polarization of the barrier. Selecting the spin direction of the tunnelling electrons by short electric pulses in the nanosecond range rather than by an applied magnetic field enables new possibilities for spin control in spintronic devices.  相似文献   

2.
Zhou Y 《Nanotechnology》2011,22(8):085202
A simple model is developed to investigate the potential profile changes due to mechanical stress at the ferromagnetic/ferroelectric interfaces of ferromagnetic-ferroelectric-ferromagnetic tunnel junctions with an ultrathin ferroelectric barrier. The potential changes associated with the polarization variation have significant effects on the tunneling conductance of the junctions. The discovered effect is illustrated by the example of a multiferroic tunnel junction in which approximately four orders of changes of the tunneling conductance and several-fold changes of the tunneling magnetoresistance (TMR) are observed due to the spin-flip induced nanomechanical stress. The TMR modulation effect is essential for realization of novel spintronics nano-devices as well as being useful for investigating fundamental aspects of the spin transfer.  相似文献   

3.
The tunnel magnetoresistance (TMR) effect in magnetic tunnel junctions (MTJs) is the key to developing magnetoresistive random-access-memory (MRAM), magnetic sensors and novel programmable logic devices. Conventional MTJs with an amorphous aluminium oxide tunnel barrier, which have been extensively studied for device applications, exhibit a magnetoresistance ratio up to 70% at room temperature. This low magnetoresistance seriously limits the feasibility of spintronics devices. Here, we report a giant MR ratio up to 180% at room temperature in single-crystal Fe/MgO/Fe MTJs. The origin of this enormous TMR effect is coherent spin-polarized tunnelling, where the symmetry of electron wave functions plays an important role. Moreover, we observed that their tunnel magnetoresistance oscillates as a function of tunnel barrier thickness, indicating that coherency of wave functions is conserved across the tunnel barrier. The coherent TMR effect is a key to making spintronic devices with novel quantum-mechanical functions, and to developing gigabit-scale MRAM.  相似文献   

4.
In the past few years the phenomenon of spin-dependent tunneling (SDT) in magnetic tunnel junctions (MTJs) has aroused enormous interest and has developed into a vigorous field of research. The large tunneling magnetoresistance (TMR) observed in MTJs garnered much attention due to possible application in random access memories and magnetic field sensors. This led to a number of fundamental questions regarding the phenomenon of SDT. One such question is the role of interfaces in MTJs and their effect on the spin polarization of the tunneling current and TMR. In this paper we consider different models which suggest that the spin polarization is primarily determined by the electronic and atomic structure of the ferromagnet/insulator interfaces rather than by their bulk properties. First, we consider a simple tight-binding model which demonstrates that the existence of interface states and their contribution to the tunneling current depend on the degree of hybridization between the orbitals on metal and insulator atoms. The decisive role of the interfaces is further supported by studies of spin-dependent tunneling within realistic first-principles models of Co/vacuum/Al, Co/Al2O3/Co, Fe/MgO/Fe, and Co/SrTiO3/Co MTJs. We find that variations in the atomic potentials and bonding strength near the interfaces have a profound effect resulting in the formation of interface resonant states, which dramatically affect the spin polarization and TMR. The strong sensitivity of the tunneling spin polarization and TMR to the interface atomic and electronic structure dramatically expands the possibilities for engineering optimal MTJ properties for device applications.  相似文献   

5.
Magnetic tunnel junctions have become ubiquitous components appearing in magnetic random-access memory, read heads of magnetic disk drives and semiconductor-based spin devices. Inserting a tunnel barrier has been key to achieving spin injection from ferromagnetic (FM) metals into GaAs, but spin injection into Si has remained elusive. We show that Schottky barrier formation leads to a huge conductivity mismatch of the FM tunnel contact and Si, which cannot be solved by the well-known method of adjusting the tunnel barrier thickness. We present a radically different approach for spin-tunnelling resistance control using low-work-function ferromagnets, inserted at the FM/tunnel barrier interface. We demonstrate that in this way the resistance-area (RA) product of FM/Al2O3/Si contacts can be tuned over eight orders of magnitude, while simultaneously maintaining a reasonable tunnel spin polarization. This raises prospects for Si-based spintronics and presents a new category of ferromagnetic materials for spin-tunnel contacts in low-RA-product applications.  相似文献   

6.
To examine the influence of the barrier quality in fully epitaxial Fe/MgO/Fe(001) magnetic tunnel junctions (MTJs), we propose to use Fe-V alloys as magnetic electrodes. This leads to a reduced misfit with MgO. We actually observe, by high-resolution electron microscopy (HREM) and local strain measurements, that the misfit dislocations density in the MgO barrier is lower when it is grown on Fe-V(001). This improvement of the crystalline quality of the MgO barrier actually leads to a significant increase of the tunnel magneto-resistance (TMR), despite the loss of spin polarization (SP) in these alloys, which was measured by spin-polarized X-ray photoelectron spectroscopy (SR-XPS).  相似文献   

7.
Magnetically engineered magnetic tunnel junctions (MTJs) show promise as non-volatile storage cells in high-performance solid-state magnetic random access memories (MRAM). The performance of these devices is currently limited by the modest (< approximately 70%) room-temperature tunnelling magnetoresistance (TMR) of technologically relevant MTJs. Much higher TMR values have been theoretically predicted for perfectly ordered (100) oriented single-crystalline Fe/MgO/Fe MTJs. Here we show that sputter-deposited polycrystalline MTJs grown on an amorphous underlayer, but with highly oriented (100) MgO tunnel barriers and CoFe electrodes, exhibit TMR values of up to approximately 220% at room temperature and approximately 300% at low temperatures. Consistent with these high TMR values, superconducting tunnelling spectroscopy experiments indicate that the tunnelling current has a very high spin polarization of approximately 85%, which rivals that previously observed only using half-metallic ferromagnets. Such high values of spin polarization and TMR in readily manufactureable and highly thermally stable devices (up to 400 degrees C) will accelerate the development of new families of spintronic devices.  相似文献   

8.
We have fabricated fully epitaxial magnetic tunnel junctions (MTJs) using a Co-based full-Heusler alloy Co/sub 2/Cr/sub 0.6/Fe/sub 0.4/Al (CCFA) thin film and an MgO tunnel barrier. The CCFA thin film for the lower ferromagnetic electrode was deposited by magnetron sputtering on an MgO-buffered MgO single-crystal substrate, and the MgO tunnel barrier was formed by electron beam evaporation. The microfabricated epitaxial CCFA/MgO/CoFe MTJs showed high tunnel magnetoresistance ratios of 42% at room temperature and 74% at 55K.  相似文献   

9.
Abstract

The performance of spintronics depends on the spin polarization of the current. In this study half-metallic Co-based full-Heusler alloys and a spin filtering device (SFD) using a ferromagnetic barrier have been investigated as highly spin-polarized current sources. The multilayers were prepared by magnetron sputtering in an ultrahigh vacuum and microfabricated using photolithography and Ar ion etching. We investigated two systems of Co-based full-Heusler alloys, Co2Cr1 ? xFexAl (CCFA(x)) and Co2FeSi1 ? xAlx (CFSA(x)) and revealed the structure and magnetic and transport properties. We demonstrated giant tunnel magnetoresistance (TMR) of up to 220% at room temperature and 390% at 5 K for the magnetic tunnel junctions (MTJs) using Co2FeSi0.5Al0.5 (CFSA(0.5)) Heusler alloy electrodes. The 390% TMR corresponds to 0.81 spin polarization for CFSA(0.5) at 5 K. We also investigated the crystalline structure and local structure around Co atoms by x-ray diffraction (XRD) and nuclear magnetic resonance (NMR) analyses, respectively, for CFSA films sputtered on a Cr-buffered MgO (001) substrate followed by post-annealing at various temperatures in an ultrahigh vacuum. The disordered structures in CFSA films were clarified by NMR measurements and the relationship between TMR and the disordered structure was discussed. We clarified that the TMR of the MTJs with CFSA(0.5) electrodes depends on the structure, and is significantly higher for L21 than B2 in the crystalline structure. The second part of this paper is devoted to a SFD using a ferromagnetic barrier. The Co ferrite is investigated as a ferromagnetic barrier because of its high Curie temperature and high resistivity. We demonstrate the strong spin filtering effect through an ultrathin insulating ferrimagnetic Co-ferrite barrier at a low temperature. The barrier was prepared by the surface plasma oxidization of a CoFe2 film deposited on a MgO (001) single crystal substrate, wherein the spinel structure of CoFe2O4 (CFO) and an epitaxial relationship of MgO(001)[100]/CoFe2 (001)]110]/CFO(001)[100] were induced. A SFD consisting of CoFe2 /CFO/Ta on a MgO (001) substrate exhibits the inverse TMR of - 124% at 10 K when the configuration of the magnetizations of CFO and CoFe2 changes from parallel to antiparallel. The inverse TMR suggests the negative spin polarization of CFO, which is consistent with the band structure of CFO obtained by first principle calculation. The - 124% TMR corresponds to the spin filtering efficiency of 77% by the CFO barrier.  相似文献   

10.
The performance of spintronics depends on the spin polarization of the current. In this study half-metallic Co-based full-Heusler alloys and a spin filtering device (SFD) using a ferromagnetic barrier have been investigated as highly spin-polarized current sources. The multilayers were prepared by magnetron sputtering in an ultrahigh vacuum and microfabricated using photolithography and Ar ion etching. We investigated two systems of Co-based full-Heusler alloys, Co2Cr1 − xFexAl (CCFA(x)) and Co2FeSi1 − xAlx (CFSA(x)) and revealed the structure and magnetic and transport properties. We demonstrated giant tunnel magnetoresistance (TMR) of up to 220% at room temperature and 390% at 5 K for the magnetic tunnel junctions (MTJs) using Co2FeSi0.5Al0.5 (CFSA(0.5)) Heusler alloy electrodes. The 390% TMR corresponds to 0.81 spin polarization for CFSA(0.5) at 5 K. We also investigated the crystalline structure and local structure around Co atoms by x-ray diffraction (XRD) and nuclear magnetic resonance (NMR) analyses, respectively, for CFSA films sputtered on a Cr-buffered MgO (001) substrate followed by post-annealing at various temperatures in an ultrahigh vacuum. The disordered structures in CFSA films were clarified by NMR measurements and the relationship between TMR and the disordered structure was discussed. We clarified that the TMR of the MTJs with CFSA(0.5) electrodes depends on the structure, and is significantly higher for L21 than B2 in the crystalline structure. The second part of this paper is devoted to a SFD using a ferromagnetic barrier. The Co ferrite is investigated as a ferromagnetic barrier because of its high Curie temperature and high resistivity. We demonstrate the strong spin filtering effect through an ultrathin insulating ferrimagnetic Co-ferrite barrier at a low temperature. The barrier was prepared by the surface plasma oxidization of a CoFe2 film deposited on a MgO (001) single crystal substrate, wherein the spinel structure of CoFe2O4 (CFO) and an epitaxial relationship of MgO(001)[100]/CoFe2 (001)]110]/CFO(001)[100] were induced. A SFD consisting of CoFe2 /CFO/Ta on a MgO (001) substrate exhibits the inverse TMR of - 124% at 10 K when the configuration of the magnetizations of CFO and CoFe2 changes from parallel to antiparallel. The inverse TMR suggests the negative spin polarization of CFO, which is consistent with the band structure of CFO obtained by first principle calculation. The - 124% TMR corresponds to the spin filtering efficiency of 77% by the CFO barrier.  相似文献   

11.
Organic semiconductors are emerging materials in the field of spintronics. Successful achievements include their use as a tunnel barrier in magnetoresistive tunnelling devices and as a medium for spin-polarized current in transport devices. In this paper, we give an overview of the basic concepts of spin transport in organic semiconductors and present the results obtained in the field, highlighting the open questions that have to be addressed in order to improve devices performance and reproducibility. The most challenging perspectives will be discussed and a possible evolution of organic spin devices featuring multi-functional operation is presented.  相似文献   

12.
In the first part of this paper, we report a systematic study on the structural evolution under rapid thermal annealing and the corresponding transport properties in magnetic tunnel junctions (MTJs) with a crystalline MgO barrier. The results clearly indicate that high tunneling magnetic resistance can be achieved by annealing MTJs at a very short time, and it is directly related to the formation of (001) crystalline structures. In the second part, we report the spin dynamics in tunneling structure through direct electrical detection. A surprisingly large voltage generation in F/I/N and F/I/F junctions was observed, which is contradictory to the prediction from the standard spin-pumping theory. We proposed a theoretical formalism to study spin-pumping effects in ferromagnetic multilayer structures. The formalism can yield a remarkably clean physical picture of the spin and charge pumping in tunneling structures. The calculated values are consistent with experimental results.  相似文献   

13.
Single barrier magnetic-tunnel-junctions (MTJs) with the layer structure of Ta(5)/Cu(30)/Ta(5)/Ni79Fe21(5)/Ir22Mn78(12)/Co60Fe20B20(4)/Al(0.8)-oxide/Co60Fe20B20(4)/Cu(30)/Ta(5) [thickness unit: nm] using the amorphous Co60Fe20B20 alloy as free and pinned layers were micro-fabricated. The experimental investigations showed that the tunnel magnetoresistance (TMR) ratio and the resistance decrease with increasing dc bias voltage from 0 to 500~mV or with increasing temperature from 4.2 K to RT. A high TMR ratio of 86.2% at 4.2 K, which corresponds to the high spin polarization of Co60Fe20B20 55%, was observed in the MTJs after annealing at 270℃ for 1 h. High TMR ratio of 53.1%, low junction resistance-area product RS of 3.56 kΩμm2, small coercivity Hc of ≤4 Oe, and relatively large bias-voltage-at-half-maximum TMR with the value V1/2 of greater than 570 mV at RT have been achieved in such Co-Fe-B MTJs.  相似文献   

14.
Some full-Heusler alloys, such as Co(2)MnSi and Co(2)MnGe, are expected to be half-metallic ferromagnetic material, which has complete spin polarization. They are the most promising materials for realizing half-metallicity at room temperature owing to their high Curie temperature. We demonstrate a huge tunnel magnetoresistance effect in a magnetic tunnel junction using a Co(2)MnSi Heusler alloy electrode. This result proves high spin polarization of the Heusler alloy. We also demonstrate a small magnetic damping constant in Co(2)FeAl epitaxial film. The very high spin polarization and small magnetic constant of Heusler alloys will be a great advantage for future spintronic device applications.  相似文献   

15.
Single barrier magnetic-tunnel-junctions (MTJs) with the layer structure of Ta(5)/Cu(30)/Ta(5)/Ni79Fe21(5)/Ir22 Mn78(12)/Co60Fe20B20(4)/Al(0.8)-oxide/Co60Fe20B20(4)/Cu(30)/Ta(5) [thickness unit: nm] using the amorphous Co60Fe20B20 alloy as free and pinned layers were micro-fabricated. The experimental investigations showed that the tunnel magnetoresistance (TMR) ratio and the resistance decrease with increasing dc bias voltage from 0 to 500 mV or with increasing temperature from 4.2 K to RT. A high TMR ratio of 86.2% at 4.2 K, which corresponds to the high spin polarization of Co60Fe20B20, 55%, was observed in the MTJs after annealing at 270℃for 1 h. High TMR ratio of 53.1%, low junction resistance-area product RS of 3.56 kΩμm2, small coercivity HC of ≤4 Oe, and relatively large bias-voltage-at-half-maximum TMR with the value V1/2 of greater than 570 mV at RT have been achieved in such Co-Fe-B MTJs.  相似文献   

16.
17.
In recent years, the field of antiferromagnetic spintronics has been substantially advanced. Electric-field control is a promising approach for achieving ultralow power spintronic devices via suppressing Joule heating. Here, cutting-edge research, including electric-field modulation of antiferromagnetic spintronic devices using strain, ionic liquids, dielectric materials, and electrochemical ionic migration, is comprehensively reviewed. Various emergent topics such as the Néel spin–orbit torque, chiral spintronics, topological antiferromagnetic spintronics, anisotropic magnetoresistance, memory devices, 2D magnetism, and magneto-ionic modulation with respect to antiferromagnets are examined. In conclusion, the possibility of realizing high-quality room-temperature antiferromagnetic tunnel junctions, antiferromagnetic spin logic devices, and artificial antiferromagnetic neurons is highlighted. It is expected that this work provides an appropriate and forward-looking perspective that will promote the rapid development of this field.  相似文献   

18.
A relationship between boron (B) diffusion into the MgO barrier and pinhole creation in CoFeB/MgO/CoFeB-magnetic tunnel junctions (MTJs) was investigated. The diffused B in the MgO layer was identified by secondary ion mass spectrometry for the MTJs annealed at 350degC , which provide the giant magnetoresistance (TMR) ratio. The pinhole density, estimated from the statistic distribution of breakdown voltage of the TMR properties, increased as either the thickness or the B content of the CoFeB layer became thicker or higher. These experimental findings imply that the diffused B into the MgO barrier creates pinholes to short-circuit the tunnel conduction, since the amount of diffused B into the MgO barrier might be related to the total amount of the B content in the CoFeB layer. Three different techniques were found to be useful for the reduction of diffused B into the MgO barrier layer; usage of materials having boron affinity for capping layer, decrease of the total amount of B-content in CoFeB layer, and reduction of grain boundaries in the MgO barrier layer.  相似文献   

19.
Resistive switching phenomena form the basis of competing memory technologies. Among them, resistive switching, originating from oxygen vacancy migration (OVM), and ferroelectric switching offer two promising approaches. OVM in oxide films/heterostructures can exhibit high/low resistive state via conducting filament forming/deforming, while the resistive switching of ferroelectric tunnel junctions (FTJs) arises from barrier height or width variation while ferroelectric polarization reverses between asymmetric electrodes. Here the authors demonstrate a coexistence of OVM and ferroelectric induced resistive switching in a BaTiO3 FTJ by comparing BaTiO3 with SrTiO3 based tunnel junctions. This coexistence results in two distinguishable loops with multi‐nonvolatile resistive states. The primary loop originates from the ferroelectric switching. The second loop emerges at a voltage close to the SrTiO3 switching voltage, showing OVM being its origin. BaTiO3 based devices with controlled oxygen vacancies enable us to combine the benefits of both OVM and ferroelectric tunneling to produce multistate nonvolatile memory devices.  相似文献   

20.
Current-induced magnetization switching (CIMS) was demonstrated in low resistance magnetic tunnel junctions (MTJs) with thin MgO [001] barrier. The resistance change by CIMS was more than 100%, which is much larger than the previous report in Al-O based MTJs. The switching current density was about 2/spl times/10/sup 7/ A/cm/sup 2/, which was comparable with that reported values in metallic multilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号