首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blue and green dual wavelength InGaN/GaN multi-quantum well (MQW) light-emitting diode (LED) has wide applications in full color display, monolithic white LED and solid state lighting, etc. Blue and green dual wavelength LEDs, which consist of InGaN strain-reduction layer, green InGaN/GaN MQW and blue InGaN/ GaN MQW, were grown by metal-organic chemical vapor deposition (MOCVD), and the luminescence properties of dual wavelength LEDs with different well arrangements were studied by photoluminescence and electrolumines-cence. The experimental results indicated that well position played an important role on the luminescence evolvement from photoluminescence to electroluminescence.  相似文献   

2.
Mg-doped InGaN/GaN p-type short-period superlattices (SPSLs) are developed for hole injection and contact layers of green light-emitting diodes (LEDs). V-defect-related pits, which are commonly found in an InGaN bulk layer, can be eliminated in an InGaN/GaN superlattice with thickness and average composition comparable to those of the bulk InGaN layer. Mg-doped InGaN/GaN SPSLs show significantly improved electrical properties with resistivity as low as ∼0.35 ohm-cm, which is lower than that of GaN:Mg and InGaN:Mg bulk layers grown under optimized growth conditions. Green LEDs employing Mg-doped InGaN/GaN SPSLs for hole injection and contact layers have significantly lower reverse leakage current, which is considered to be attributed to improved surface morphology. The peak electroluminescence intensity of LEDs with a SPSL is compared to that with InGaN:Mg bulk hole injection and contact layers.  相似文献   

3.
Electrical and electroluminescent properties were studied for GaN/InGaN light-emitting diodes (LEDs) with the n-GaN layer up and with the top portion of the n layer made of undoped GaMnN to allow polarization modulation by applying an external magnetic field (so-called “spin-LEDs”). The contact annealing temperature was kept to 750°C, which is the thermal stability limit for retaining room-temperature magnetic ordering in the GaMnN layer. Measurable electroluminescence (EL) was obtained in these structures at threshold voltages of ∼15 V, with a lower EL signal compared to control LEDs without Mn. This is related to the existence of two parasitic junctions between the metal and the lower contact p-type layer and between the GaMnN and the n-GaN in the top contact layer.  相似文献   

4.
We investigated the electrical and structural qualities of Mg-doped p-type GaN layers grown under different growth conditions by metalorganic chemical vapor deposition (MOCVD). Lower 300 K free-hole concentrations and rough surfaces were observed by reducing the growth temperature from 1,040°C to 930°C. The hole concentration, mobility, and electrical resistivity were improved slightly for Mg-doped GaN layers grown at 930°C with a lower growth rate, and also an improved surface morphology was observed. In0.25Ga0.75N/GaN multiple-quantum-well light emitting diodes (LEDs) with p-GaN layers grown under different conditions were also studied. It was found from photoluminescence studies that the optical and structural properties of the multiple quantum wells in the LED structure were improved by reducing the growth temperature of the p-layer due to a reduced detrimental thermal annealing effect of the active region during the GaN:Mg p-layer growth. No significant difference in the photoluminescence intensity depending on the growth time of the p-GaN layer was observed. However, it was also found that the electroluminescence (EL) intensity was higher for LEDs having p-GaN layers with a lower growth rate. Further improvement of the p-GaN layer crystalline and structural quality may be required for the optimization of the EL properties of long-wavelength (∼540 nm) green LEDs.  相似文献   

5.
We present a comparative study on temperature dependence of electroluminescence (EL) of InGaN/GaN multiple-quantum-well (MQW) light-emitting diodes (LEDs) with identical structure but different indium contents in the active region. For the ultraviolet (UV) and blue LEDs, the EL intensity decreases dramatically with decreasing temperature after reaching a maximum at 150 K. The peak energy exhibits a large redshift in the range of 20–50 meV with a decrease of temperature from 200 K to 70 K, accompanying the appearance of longitudinal-optical (LO) phonon replicas broadening the low energy side of the EL spectra. This redshift is explained by carrier relaxation into lower energy states, leading to dominant radiative recombination at localized states. In contrast, the peak energy of the green LED exhibits a minimal temperature-induced shift, and the emission intensity increases monotonically with decreasing temperature down to 5 K. We attribute the different temperature dependences of the EL to different degrees of the localization effects in the MQW regions of the LEDs.  相似文献   

6.
InGaN/GaN MQW双波长LED的MOCVD生长   总被引:1,自引:0,他引:1  
利用金属有机物化学气相淀积(MOCVD)系统生长了InGaN/GaN多量子阱双波长发光二极管(LED).发现在20 mA正向注入电流下空穴很难输运过蓝光和绿光量子阱间的垒层,这是混合量子阱有源区获得双波长发光的主要障碍.通过掺入一定量的In来降低蓝光和绿光量子阱之间的垒层的势垒高度,增加注入到离p-GaN层较远的绿光有源区的空穴浓度,从而改变蓝光和绿光发光峰的强度比.研究了蓝光和绿光量子阱间垒层In组分对双波长LED的发光性质的影响.此外,研究了双波长LED发光特性随注入电流的变化.  相似文献   

7.
We have compared the effects of Mg-doped GaN and In0.04Ga0.96N layers on the electrical and electroluminescence (EL) properties of the green light emitting diodes (LEDs). To investigate the effects of different p-layers on the LED performance, the diode active region structures were kept identical. For LEDs with p-InGaN layers, the p-In0.04Ga0.96N/GaN polarization-related EL peak was dominant at low current levels, while the multiple-quantum-well (MQW) peak became dominant at higher current levels, different from LEDs with p-GaN layers. Also, LEDs with p-InGaN exhibited slightly higher turn on voltages (V on ) and forward voltages (V f ) compared to LEDs with p-GaN layers. However, the MQW related EL intensity was much higher and diode series resistance lower for LEDs with p-InGaN layers compared with LEDs with p-GaN, showing possible improvements in output power for LEDs with p-InGaN layers. The diodes with p-GaN layers typically showed V f of ∼3.1 V at a drive current of 20 mA, with a series resistance of ∼24.7 Ω, while diodes with p-InGaN showed V f of ∼3.2 V, with a series resistance of ∼18.5 Ω, for device dimensions of 230 μm by 230 μm.  相似文献   

8.
研究了MOCVD生长的具有双发射峰结构的InGaN/GaN多量子阱发光二极管(LED)的结构和发光特性.在透射电子显微镜(TEM)下可以发现量子阱的宽度不一致,电致发光谱(EL)发现了位于2.45eV的绿光发光峰和2.81eV处的蓝光发光峰.随着电流密度增加,双峰的峰位没有移动,直到注入电流密度达到2×104 mA/cm2时,绿光发光峰发生蓝移,而蓝光发光峰没有变化.单色的阴极荧光谱(CL)发现绿光发射对应的发光区包括絮状区域和发光点,而蓝光发射对应的发光区仅包含絮状区域.通过以上的结果,我们认为蓝光发射基本上源于InGaN量子阱发光,而绿光发射则起源于量子阱和量子点的发光.  相似文献   

9.
Zhao  Y. S.  Hibbard  D. L.  Lee  H. P.  Ma  K.  So  W.  Liu  H. 《Journal of Electronic Materials》2003,32(12):1523-1526
The design, fabrication, and performance characteristics of a back-surface distributed Bragg reflector (DBR) enhanced InGaN/GaN light-emitting diode (LED) are described. A wide reflectance bandwidth in the blue and green wavelength regions is obtained using a double quarter-wave stack design composed of TiO2 and SiO2 layers. More than 65% enhancement in extracted light intensity is demonstrated for a blue LED measured at the chip level. Similar improvement in green LED performance is discussed and achieved through simulation. Possible applications of back-surface DBR-enhanced LEDs include surface-mount packages with significantly reduced vertical profiles, resonant cavity LEDs, and superluminescent diodes.  相似文献   

10.
Crack-free InGaN/GaN quantum-well (QW) light-emitting diode (LED) structures were grown on a patterned Si substrate. Spatially resolved cathodoluminescence was studied on these LED wafers. Cathodoluminescence (CL) emission spectra at room temperature and low temperature (82 K) were measured. A main LED peak (∼2.7 eV) and an additional peak (∼3.1 eV) in the emission spectra at 82 K were observed. Using CL spectra mapping measurements on a cross section of the sample, it can be clearly seen that the ∼3.1 eV emission comes from the interfacial layer between the p-AlGaN and the QWs. This observation was further verified by comparing spectra of specific points on the cross section by line scanning. The origin of such emission is discussed. Cathodoluminescence images, emission spectra, and x-ray energy dispersion spectra (EDS) showed that the In composition at a specific corner of the mesa was higher than that in the rest of the mesa. Such macroscopic inhomogeneity might be caused by gas dynamics on the patterned substrate.  相似文献   

11.
High-quality InGaN/GaN multiple-quantum well (MQW) light-emitting diode (LED) structures were prepared by a temperature-ramping method during metal-organic chemical-vapor deposition (MOCVD) growth. Two photoluminescence (PL) peaks, one originating from well-sensitive emission and one originating from an InGaN quasi-wetting layer on the GaN-barrier surface, were observed at room temperature (RT). The observation of high-order double-crystal x-ray diffraction (DCXRD) satellite peaks indicates that the interfaces between InGaN-well layers and GaN-barrier layers were not degraded as we increased the growth temperature of the GaN-barrier layers. With a 20-mA and 160-mA current injection, it was found that the output power could reach 2.2 mW and 8.9 mW, respectively. Furthermore, it was found that the reliability of the fabricated green LEDs prepared by temperature ramping was also reasonably good.  相似文献   

12.
InGaN red light emitting diode (LED) is one of the crucial bottlenecks that must be broken through to realize high-resolution full-color mini/micro-LED displays. The efficiency of InGaN LEDs drops rapidly as the emission spectra go from blue/green to red range due to the poor quality of high-indium-content InGaN materials. Here, high-performance InGaN red LEDs on sapphire grown by metal–organic chemical vapor deposition through strain modulation are reported. A composite buffer layer is proposed to increase the surface lattice constant of GaN and hence successfully enhances the indium incorporation efficiency of the following InGaN active layers. Consequently, a high-efficiency InGaN red mini-LED chip (mesa area: 100 × 200 µm2) with a peak wavelength of 629 nm and an external quantum efficiency of 7.4% is realized. Finally, a full-color nitride mini-LED display panel with 74.1% coverage of Rec.2020 color gamut by using the InGaN red mini-LED chips is fabricated. The study signifies the great potentials of full-nitrides high-resolution full-color mini/micro-LED displays.  相似文献   

13.
曹文彧  王文义 《半导体光电》2019,40(2):211-214, 251
为了减弱InGaN/GaN量子阱内的压电极化场,在蓝紫光InGaN/GaN多量子阱激光器结构中采用了预应变InGaN插入层,通过变温电致发光和高分辨X射线衍射测量研究了预应变插入层对量子阱晶体质量和发光特性的影响。实验结果显示,常温下有预应变层的量子阱电致发光谱积分强度显著提高。模拟计算进一步表明,预应变层对量子阱内压电极化场有调制效果,有利于量子阱中的应力弛豫,可以有效减弱量子限制斯塔克效应,有助于提高量子阱的发光效率。  相似文献   

14.
The distribution of electroluminescence (EL) intensity over the area and in the course of time before and after the optical degradation of blue InGaN/GaN LEDs is studied. Current-voltage characteristics have been recorded. It is found that the initially bright luminescence near the region of metallization of the p-contact turns weak after the degradation of an LED. The time delay of ~20–40 ns is observed in the distribution of EL intensity over the area of LEDs after their degradation. We suppose that a rise in the excess current after degradation is due to the density increasing of the InGaN/GaN interface states and the formation of an electrical dipole, which lowers the potential barriers in p-GaN and n-GaN layers. The corresponding increase of capacitance leads to a time delay in the spreading of the injection current and in the distribution of the emission brightness over the area. The lateral nonuniformity of the carrier injection into the quantum, well before and after optical degradation, is attributed to diffusion and electromigration of hydrogen, induced by mechanical stress. The metallization of the p-contact may be the source of mechanical stress.  相似文献   

15.
The direction of the piezoelectric field in InGaN/GaN multiple quantum-well (MQW) structures grown by metal-organic vapor deposition (MOCVD) was determined using excitation-power-density variable photoluminescence (PL). By comparing the excitation-power-density dependence of the shift of the PL peak and the change of the full-width at half-maximum (FWHM) of the peak from an InGaN/GaN MQW structure and an InGaN MQW-based light-emitting diode (LED), the piezoelectric field in the InGaN/GaN MQW structures was unambiguously determined to be pointing toward the substrate. This result helps to identify the surface polarity of the LED wafer as Ga-faced.  相似文献   

16.
The advantages of the p-AIInGaN/GaN superlattices' (SLs) structure as an electron blocking layer (EBL) for InGaN blue light-emitting diodes (LEDs) were studied by experiment and APSYS simulation. Elec- troluminescence (EL) measurement results show that the LEDs with the p-AllnGaN/GaN SLs' structure EBL ex- hibited better optical performance compared with the conventional A1GaN EBL due to the enhancement of hole concentration and hole carrier transport efficiency, and the confinement of electrons' overflow between multiple quantum-wells (MQWs) and EBL.  相似文献   

17.
MOVPE生长的GaN基蓝色与绿色LED   总被引:1,自引:1,他引:0  
报道用自行研制的LP-MOVPE设备,在蓝宝石(α-Al2O3)衬底上生长出以InGaN为有源区的蓝光和绿光InGaN/AlGsN双异质结构以及InGaN/GaN量子阱结构的LED,其发射波长分别为430-450nm和520-540nm。  相似文献   

18.
We have investigated the effects of nonradiative recombination centers (NRCs) on the device performance of InGaN/GaN multi-quantum-well (MQW) light-emitting diodes (LEDs) inserting low-temperature n-GaN (LT-GaN) underlying layers. Inserting an LT-GaN underlying layer prior to growing the MQWs is a successful means of separating the induced nonradiative recombination centers because a growth interrupt interface exists between the n-GaN template and the InGaN QW. We found that by introducing this technique would improve the external quantum efficiency of the as-grown conventional LEDs. The electroluminescence relative intensity of a blue LED incorporating a 70-nm-thick LT-GaN was 20.6% higher (at 20 mA current injection) than that of the corresponding as-grown blue LED in the best case.  相似文献   

19.
In this report, the influence of magnesium doping on the characteristics of InGaN/GaN multiple quantum wells (MQWs) was investigated by means of atomic force microscopy (AFM), photoluminescence (PL), and X-ray diffraction (XRD). Five-period InGaN/GaN MQWs with different magnesium doping levels were grown by metalorganic chemical vapor deposition. The AFM measurements indicated that magnesium doping led to a smoother surface morphology. The V-defect density was observed to decrease with increasing magnesium doping concentration from ∼109 cm−2 (no doping) to ∼106 cm−2 (Cp2Mg: 0.04 sccm) and further to 0 (Cp2 Mg: 0.2 sccm). The PL measurements showed that magnesium doping resulted in stronger emission, which can be attributed to the screening of the polarization-induced band bending. XRD revealed that magnesium doping had no measurable effect on the indium composition and growth rate of the MQWs. These results suggest that magnesium doping in MQWs might improve the optical properties of GaN photonic devices.  相似文献   

20.
用SiO2纳米图形层作为模板在以蓝宝石为衬底的n-GaN单晶层上制备了InGaN/GaN多量子阱纳米线,并成功实现了其发光二极管器件(LED).场发射扫描电子显微镜(FESEM)的测量结果表明,InGaN/GaN多量子阱纳米线具有光滑的表面形貌和三角形的剖面结构.室温下阴极射线荧光谱(CL)的测试发现了位于461 nm...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号