共查询到20条相似文献,搜索用时 15 毫秒
1.
Patcharaporn ThungklinAlissara Reungsang Sureewan Sittijunda 《International Journal of Hydrogen Energy》2011,36(14):8751-8757
This study aims to produce hydrogen from sludge of poultry slaughterhouse wastewater treatment plant (5% total solid) by anaerobic batch fermentation with Enterobactor aerogenes or mixed cultures from hot spring sediment as the inoculums. Sludge was heated in microwave at 850 W for 3 min. Results indicated that a soluble chemical oxygen demand (sCOD) of pretreated sludge was higher than that of raw sludge. Pretreated sludge inoculated with E. aerogenes and supplemented with the Endo nutrient had a higher hydrogen yield (12.77 mL H2/g tCOD) than the raw sludge (0.18 mL H2/g tCOD). When considered the hydrogen yield, the optimum initial pH for hydrogen production from microwave pretreated sludge was 5.5 giving the maximum value of 12.77 mL H2/g tCOD. However, when considered the hydrogen production rate (Rm), the optimum pH for hydrogen production would be 9.0 with the maximum Rm of 22.80 mL H2/L sludge·h. 相似文献
2.
Yu Wang Hui Wang Xiaoqiong Feng Xiaofang Wang Jianxin Huang 《International Journal of Hydrogen Energy》2010
An anaerobic fermentation process to produce hydrogen from cornstalk wastes was systematically investigated in this work. Batch experiments numbered series I, II and III were designed to investigate the effects of acid pretreatment, enzymatic hydrolysis (enzymatic temperature, enzymatic time and enzymatic pH) on hydrogen production by using the natural sludge as inoculant. A maximum cumulative H2 yield of 126.22 ml g−1-CS (Cornstalk, or 146.94 ml g−1-TS, Total Solid) and an average H2 production rate of 9.58 ml g−1-CS h−1 were obtained from fermentation cornstalk with a concentration of 20 g/L and an initial pH of 7.0 at 36 °C through an optimal pretreatment process. The optimal process was that the substrate was soaked with an HCl concentration of 0.6 wt% at 90 °C for 2 h, and subsequently enzymatic hydrolysis for 72 h at 50 °C and pH 4.8 before fermentation. The biogas consisted of only H2 and CO2. In addition, the fermentation system was the typical ethanol-type fermentation according to ethanol and acetate as the main liquid by-products. 相似文献
3.
《Renewable Energy》2003,28(14):2255-2267
The heating requirements of the thermophilic anaerobic digestion process were studied. Biogas production was studied in laboratory experiments at retention times from 1 to 10 days. The data gathered in the experiments was then used to perform a heat and energy analysis. The source of heat was a conventional CHP unit system. The results showed that thermophilic digestion is much faster than mesophilic digestion and therefore produces more biogas in a shorter time or at smaller digester volumes. The major part of the heating requirements consisted of sludge heating. The heat losses of the digester were only 2–8% of the sludge heating requirements. The heating requirements in thermophilic digestion are about twice those of mesophilic digestion. Therefore a CHP unit system cannot cover all of the needs for successful operation of thermophilic digestion. Heat regeneration was introduced as a solution. Heat is regenerated from the sludge outflow at a temperature of 50–55 °C and transferred to the cold inflow sludge at a temperature of 11 °C. Enough heat is regenerated in a conventional counter flow heat exchanger to bring the thermophilic process to the same level as the mesophilic one. Considering the smaller digester volumes and the relatively small investment in the regenerative equipment, the construction of thermophilic digestion systems may be a very good alternative to conventional mesophilic sludge digestion systems. 相似文献
4.
Batch tests were carried out to investigate the bioelectrochemical enhancement of hydrogen and methane production from the anaerobic digestion of sewage sludge in single-chamber membrane-free microbial electrolysis cells (MEC) and non-MECs. Hydrogen and methane were produced from the anaerobic digestion of sewage sludge in all reactors. Compared with controls, hydrogen production was enhanced 1.7–5.2-fold, and methane production 11.4–13.6-fold with Ti/Ru electrodes at applied voltages of 1.4 and 1.8 V, respectively. Most of hydrogen was produced in the first 5 days of digestion and most of methane was generated after 5 days. No oxygen was detected in the biogas and no hydrogen production was detected in the control test with water. The applied voltages can enhance the removal of suspended and volatile suspended solids, increase the transformation of soluble chemical oxygen demand, accelerate the conversion of volatile fatty acids and maintain an optimal pH range for methanogen growth. 相似文献
5.
《International Journal of Hydrogen Energy》2019,44(57):30357-30366
Sewage sludge from a municipal wastewater treatment plant was fed into a microbial electrochemical system, combined with an anaerobic digester (MES-AD), for enhanced methane production and sludge stabilization. The effect of thermally pretreating the sewage sludge on MES-AD performance was investigated. These results were compared to those obtained from control operations, in which the sludge was not pretreated or MES integration was absent. The soluble chemical oxygen demand (SCOD) in the raw sewage sludge after pretreatment was 31% higher than the SCOD in untreated sludge (5804.85 mg/L vs. 4441.46 mg/mL). The methane yield and proportion of methane in biogas generated by the MES-AD were higher than those of the control systems, regardless of the pretreatment process. The maximum methane yield (0.28 L CH4/g COD) and methane production (1139 mL) were obtained with the MES inoculated with pretreated sewage sludge. Methane yield and production with this system using pretreated sewage were 47% and 56% higher, respectively, than those of the control (0.19 L CH4/g COD, 730 mL). Additionally, the maximum SCOD removal (89%) and current generation were obtained with the MES inoculated with a pretreated substrate. These results suggested that sewage sludge could be efficiently stabilized with enhanced methane production by synergistic combination of MES-AD system with pretreatment process. 相似文献
6.
When treating municipal wastewater, the disposal of sludge is a problem of growing importance, representing up to 50% of the current operating costs of a wastewater treatment plant. Although different disposal routes are possible, anaerobic digestion plays an important role for its abilities to further transform organic matter into biogas (60–70 vol% of methane, CH4), as thereby it also reduces the amount of final sludge solids for disposal whilst destroying most of the pathogens present in the sludge and limiting odour problems associated with residual putrescible matter. Anaerobic digestion thus optimises WWTP costs, its environmental footprint and is considered a major and essential part of a modern WWTP. The potential of using the biogas as energy source has long been widely recognised and current techniques are being developed to upgrade quality and to enhance energy use. The present paper extensively reviews the principles of anaerobic digestion, the process parameters and their interaction, the design methods, the biogas utilisation, the possible problems and potential pro-active cures, and the recent developments to reduce the impact of the problems. After having reviewed the basic principles and techniques of the anaerobic digestion process, modelling concepts will be assessed to delineate the dominant parameters. Hydrolysis is recognised as rate-limiting step in the complex digestion process. The microbiology of anaerobic digestion is complex and delicate, involving several bacterial groups, each of them having their own optimum working conditions. As will be shown, these groups are sensitive to and possibly inhibited by several process parameters such as pH, alkalinity, concentration of free ammonia, hydrogen, sodium, potassium, heavy metals, volatile fatty acids and others. To accelerate the digestion and enhance the production of biogas, various pre-treatments can be used to improve the rate-limiting hydrolysis. These treatments include mechanical, thermal, chemical and biological interventions to the feedstock. All pre-treatments result in a lysis or disintegration of sludge cells, thus releasing and solubilising intracellular material into the water phase and transforming refractory organic material into biodegradable species. Possible techniques to upgrade the biogas formed by removing CO2, H2S and excess moisture will be summarised. Special attention will be paid to the problems associated with siloxanes (SX) possibly present in the sludge and biogas, together with the techniques to either reduce their concentration in sludge by preventive actions such as peroxidation, or eliminate the SX from the biogas by adsorption or other techniques. The reader will finally be guided to extensive publications concerning the operation, control, maintenance and troubleshooting of anaerobic digestion plants. 相似文献
7.
8.
《International Journal of Hydrogen Energy》2019,44(32):17363-17380
Hydrogen (H2) and methane (CH4) are the potential alternative energy carriers with autonomous extensive and viable importance. These fuels could complement the advantages, and discard the disadvantages of each other, if produced simultaneously. Considering their complementary properties, co-production of a mixture of H2 and CH4 in the form of biohythane in two-stage anaerobic digestion (AD) process is gaining more interest than their individual production. Biohythane is a better transportation fuel than compressed natural gas (CNG) in terms of high range of flammability, reduced ignition temperature as well as time, without nitrous oxide (NOx) emissions, improved engine performance without specific modification, etc. Other than production of biohythane, performing two-stage AD is advantageous over one-stage AD due to short HRT, high energy recovery, high COD removal, higher H2 and CH4 yields, and reduced carbon dioxide (CO2) in biogas. For improved biohythane production, various aspects of two-stage AD need to be emphasized. Keeping the facts in mind, the process of two-stage AD along with microbial diversity in comparison to one-stage AD has been discussed in the previous sections of this review. For large scale commercial production, and utilization of biohythane in automobile sector, its execution needs evaluation of process parameters, and problems associated with two-stage AD. Hence, the later part of this review describes the production process of biohythane, concerned microbial diversity, operational process parameters, major challenges and their solutions, applications, and economic evaluation for enhanced production of biohythane. 相似文献
9.
A full factorial design was conducted to investigate the combined effects of temperatures and initial pH on fermentative hydrogen production by mixed cultures in batch tests. The experimental results showed that the modified Logistic model can be used to describe the progress of cumulative hydrogen production in the batch tests of this study. The modified Ratkowsky model can be used to describe the combined effects of the temperatures and initial pH on the substrate degradation efficiency, hydrogen yield and average hydrogen production rate. The temperatures and initial pH had interactive impact on fermentative hydrogen production. The maximum substrate degradation efficiency, the maximum hydrogen yield and the maximum average hydrogen production rate was predicted at the temperature of 37.8 °C and the initial pH of 7.1, 37.4 °C and 6.9, and 38.2 °C and 7.2, respectively. In general, the optimal temperature for the fermentative hydrogen production was around 37.8 °C and the optimal initial pH for the fermentative hydrogen production was around 7.1. 相似文献
10.
Bio-hydrogen production from thin stillage using conventional and acclimatized anaerobic digester sludge 总被引:1,自引:0,他引:1
Noha NasrElsayed Elbeshbishy Hisham Hafez George Nakhla M. Hesham El Naggar 《International Journal of Hydrogen Energy》2011,36(20):12761-12769
To assess the viability of biohydrogen production from thin stillage, a comparative evaluation of anaerobic digester sludge (ADS) and acclimatized anaerobic digester sludge (AADS) for biohydrogen production over a wide range of S0/X0 ratio (0.5-8 gCOD/gVSS) was performed. A maximum hydrogen yield of 19.5 L H2/L thin stillage was achieved for the AADS while tests with ADS achieved a maximum yield of only 7.5 L H2/L thin stillage. The optimum range of S0/X0 ratio for hydrogen production was found to be 1 to 2 gCOD/gVSS using conventional ADS and 3 to 6 gCOD/gVSS using AADS. The biomass specific hydrogen production rate for the AADS was 3.5 times higher than rate for the ADS throughout the range of S0/X0 ratio examined in this study. The DGGE profiles of the 16S rDNA gene fragments confirmed the superior performance of the AADS over the ADS, showing that the widely known hydrogen producers Clostridium acetobutyricum, Klebsiella pneumonia, Clostridium butyricum and Clostridium pasteurianum were the predominant species. 相似文献
11.
In order to harvest high-efficient hydrogen producing seeds, five pretreatment methods (including acid, heat, sonication, aeration and freeze/thawing) were performed on anaerobic digested sludge (AS) which was collected from a batch anaerobic reactor for treating organic fraction of municipal solid waste. The hydrogen production tests were conducted in serum bottles containing 20 gVS/L (24.8 g COD/L) mixture of rice and lettuce powder at 37 °C. The experimental results showed that the heat and acid pretreatment completely repressed the methanogenic activity of AS, but acid pretreatment also partially repressed hydrogen production. Sonication, freeze/thawing and aeration did not completely suppress the methanogen activity. The highest hydrogen yields were 119.7, 42.2, 26.0, 23.0, 22.7 and 22.1 mL/gVS for heated, acidified, freeze/thawed, aerated, sonicated and control AS respectively. A pH of about 4.9 was detected at the end of hydrogen producing fermentation for all tests. The selection of an initial pH can markedly affect the hydrogen producing ability for heated and acidified AS. The higher initial pH generated higher hydrogen yield and the highest hydrogen yield was obtained with initial pH 8.9 for heated AS. 相似文献
12.
13.
The anaerobic digestion of sewage sludge in conventional reactors requires a hydraulic retention time of around 20 days. By using a fixed bed reactor the hydraulic retention time was reduced to 3–7 days. Recirculation increased the removal of organic matter in this system. 相似文献
14.
Razieh Rafieenia Alberto Pivato Maria Cristina Lavagnolo 《International Journal of Hydrogen Energy》2018,43(27):12013-12022
Two-stage anaerobic digestion of food waste was performed using four different inoculum pre-treatment methods to enrich hydrogen (H2) producing bacteria from sludge. The pretreatments used in this study included heat shock, alkaline treatment, aeration, and a novel pretreatment using waste frying oil (WFO). Alkaline pretreatment and aeration did not completely inhibit methanogens in the first stage while no methane (CH4) was detected in the reactors cultivated either with heat shock or WFO-pretreated inocula. The highest H2 and CH4 yields (76.1 and 598.2 mL/gVS, respectively) were obtained using the inoculum pretreated with WFO. The highest total energy yield (21.96 kJ/gVS) and total organic carbon (TOC) removal efficiencies (95.77%) were obtained using inoculum pretreatment with WFO. The total energy yield trend obtained using the different pretreatments was as follows: WFO > alkaline > heat > aeration > control. 相似文献
15.
Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges 总被引:1,自引:0,他引:1
Heguang Zhu Wayne Parker Robert Basnar Alexander Proracki Pat Falletta Michel Béland Peter Seto 《International Journal of Hydrogen Energy》2008
Food waste (FW), primary sludge (PS) and waste activated sludge (WAS) were characterized and found to be complementary in the concentrations of carbohydrates, total Kjeldahl nitrogen (TKN), PO4–P and some metal for biological hydrogen production. Moreover, FW was found to have low pH buffering capacity while the values for PS and WAS were relatively higher. An anaerobic toxicity analysis (ATA) derived from a methanogenic ATA protocol showed that these waste materials had no toxicity to hydrogen production. Adding phosphate buffer to the FW significantly improved hydrogen production while initial pH was 7.0. Co-digestion of FW and sewage sludge was studied using a batch respirometric cultivation system. All combinations of the feedstocks (FW+PS, FW+WAS and FW+PS+WAS) showed enhanced hydrogen production potential as compared with the individual wastes. A mixing ratio of 1:1 was found to be the best among the ratios tested for all three co-digestion groups. A hydrogen yield of 112 mL/g volatile solid (VS) added was obtained from a combination of FW, PS and WAS. This yield was equivalent to 250 mL/g VS added if only FW contributed to hydrogen production. The reason for the enhancement of hydrogen production was postulated to be multifold in which the increase in buffer capacity in the co-digestion mixture was verified. 相似文献
16.
Brandon H. Gilroyed Chunli Li Xiying Hao Angus Chu Tim A. McAllister 《International Journal of Hydrogen Energy》2010
Biohydrogen production from the anaerobic digestion of specified risk materials (SRM) co-digested with cattle manure was assessed in a 3 × 5 factorial design. Total organic loading rates (OLR) of 10, 20, and 40 g L−1 volatile solids (VS) were tested using manure:SRM (wt/wt) mixtures of 100:0 (control), 90:10, 80:20, 60:40, and 50:50 using five 2 L continuously stirred biodigesters operating at 55 °C. Gas samples were taken daily to determine hydrogen production, and slurry samples were analyzed daily for volatile fatty acid (VFA) concentration, total ammonia nitrogen (TAN), and VS degradation. Hydrogen production (mL g−1 VS fed) varied quadratically according to OLR (P < 0.01), with maximum production at OLR20, while production decreased linearly (P < 0.0001) as SRM concentration increased. Reduced hydrogen production associated with SRM inclusion at >10% VS may be attributed to a rapid increase in TAN (r = −0.55) or other inhibitors such as long chain fatty acids. Reduced hydrogen production (P < 0.01) at OLR40 versus OLR20 may be related to increased rate of VFA accumulation and final VFA concentration (P < 0.001), as well as inhibition due to hydrogen accumulation (P < 0.001). Biohydrogen production from SRM co-digested with cattle manure may not be feasible on an industrial scale due to reduced hydrogen production with increasing levels of SRM. 相似文献
17.
《International Journal of Hydrogen Energy》2022,47(70):30074-30084
Recently, different metallic additives have been studied to improve biohydrogen production, such as salts or oxides with iron and nickel. The results have been positive in simple systems, but there are very few studies of the use of nanoparticles of iron and cobalt in systems that use complex substrates such as sludge. In the present study, the effects on hydrogen production from anaerobic digestion of waste activated sludge by zero valent iron nanoparticles (NZVI) and cobalt (CoNP) dosage were investigated. The maximum hydrogen yields were reached with 7 mg/gVS for both additives, 5.74 and 5.40 mLH2/gVSadded, for NZVI and CoNP, respectively. In contrast, a low yield was observed in the control reactor (1.79 mLH2/gVSadded), representing increases of over 200%. The dosage of CoNP and NZVI decreased the redox potential and increased the volatile fatty acid concentration, mainly acetic acid. The results indicate that NZVI and CoNP stimulate the early stages of anaerobic digestion of sludge. 相似文献
18.
The utilization of ultrasonic treatment on digestion sludge to enhance microbial activity for bio-hydrogen production was investigated. The optimal conditions of ultrasonic time and density on digestion sludge were detected using Central Composite Experimental Design. The regression analysis showed that a significant increase of 1.34 fold in bio-hydrogen production rate could be obtained when ultrasonic time was 10 s and ultrasonic density around 130 W/l at digester sludge concentration of 15 g VSS/l. The analyses of biodegradation characteristics in bio-hydrogen producing process implied that ultrasound did not denature the digestion sludge but just improved its biodegradation efficiency. In order to find out the mechanism of ultrasonic treatment on digestion sludge, a control experiment was designed and COD values of digestion sludge in different treatment conditions was measured. 相似文献
19.
Chunguang Liu Wansheng ShiMijung Kim Yingnan YangZhongfang Lei Zhenya Zhang 《International Journal of Hydrogen Energy》2013
Photocatalytic pretreatment of waste activated sludge (WAS) using a flat photocatalytic reactor was undertaken. Photocatalytic pretreatment enhanced the release of soluble substances from WAS, in which the soluble protein and soluble carbohydrate concentration increased by about 50% and 80%, respectively. Significant removal of heavy metal ions from the liquid phase of WAS was also achieved after photocatalytic pretreatment. In addition, the highest hydrogen yield and the highest concentration of volatile fatty acids (VFAs) were achieved from the photocatalysis pretreated WAS by batch anaerobic digestion (55 °C). The cumulative hydrogen yield from photocatalysis pretreated WAS was 211.0 ml/l-sludge, much higher than those from UV pretreated WAS (111.0 ml/l-sludge) and from raw WAS (93.0 ml/l-sludge). The results indicate that photocatalysis is a promising WAS pretreatment method for the enhancement of biohydrogen production, probably due to the photo-oxidation of organics and simultaneous photo-reduction of heavy metal ions in WAS. 相似文献