共查询到20条相似文献,搜索用时 0 毫秒
1.
Neuropeptide Y (NPY) has been shown to modulate blood pressure, heart rate and to inhibit the baroreceptor reflex at the level of nucleus tractus solitarius (NTS). The aim of this study was to examine effects of NPY and its related peptides on forskolin (1 microM)-stimulated cyclic AMP production in slices of the rat NTS. Each peptide was present at 0.3 microM. Pretreatment with NPY inhibited the stimulated increase in cyclic AMP levels in slices of rat NTS. Also [Pro34]NPY, an analog, which activates Y1, Y3 (and Y5) receptors inhibited the stimulated increase in cyclic AMP levels. However, pretreatment with the Y1 receptor-selective antagonist BIBP3226 (3 microM) did not affect the [Pro34]NPY-evoked inhibition of cyclic AMP levels. In addition, [Leu31,Pro34]NPY, an Y1 (and PP1/Y4 and Y5) receptor agonist did not inhibit the stimulated increase in cyclic AMP production. Also the Y2 receptor-selective agonist C2-NPY inhibited the stimulated elevation of cyclic AMP levels, while peptide YY, which does not recognize Y3 receptors did not significantly affect the stimulated cyclic AMP production. In conclusion, it seems that Y2 and Y3 receptors are coupled to inhibition of adenylate cyclase activity in the rat NTS. 相似文献
2.
T Imanaka H Hayashi K Kishi L Wang K Ishii O Hazeki T Katada Y Ebina 《Canadian Metallurgical Quarterly》1998,273(39):25347-25355
Rat 3Y1 cells have endogenous insulin-like growth factor-1 receptors and insulin receptor substrate (IRS)-2, but lack both insulin receptor (IR) and IRS-1. To investigate the role of IR and IRS-1 in effects of insulin, we transfected IR and IRS-1 expression plasmids into cells and reconstituted the insulin signaling pathways. 3Y1 cells stably expressing the c-myc epitope-tagged glucose transporter type 4 (3Y1-GLUT4myc) exhibit no effects of insulin, at physiological concentrations. The 3Y1-GLUT4myc-IR cells expressing GLUT4myc and IR responded to phosphatidylinositol 3,4, 5-trisphosphate (PI-3,4,5-P3) accumulation, Akt activation, the stimulation of DNA synthesis, and membrane ruffling but not to glycogen synthesis, glucose uptake, or GLUT4myc translocation. The further expression of IRS-1 in 3Y1-GLUT4myc-IR cells led to stimulation of glycogen synthesis but not to glucose uptake or GLUT4myc translocation in response to insulin, although NaF or phorbol 12-myristate 13-acetate did trigger GLUT4myc translocation in the cells. These results suggest that, in rat 3Y1 cells, (i) IRS-1 is essential for insulin-stimulated glycogen synthesis but not for DNA synthesis, PI-3,4,5-P3 accumulation, Akt phosphorylation, or membrane ruffling, and (ii) the accumulation of PI-3,4,5-P3 and activation of Akt are insufficient for glycogen synthesis, glucose uptake or for GLUT4 translocation. 相似文献
3.
M Shimizu A Nishida H Zensho M Miyata S Yamawaki 《Canadian Metallurgical Quarterly》1998,784(1-2):57-62
A reward-relevant relationship between dopamine projection regions of the ventral tegmental area (VTA) was investigated through the use of brain stimulation reward (BSR) thresholds. Using a rate-free method, changes in VTA BSR thresholds were determined after intracranial injections of the dopamine D1 antagonist, SCH 23390 into the prefrontal cortex (PFC), or the nucleus accumbens (NAcc). Reward thresholds assessed immediately after the infusion of SCH 23390 into the NAcc (0.5 microgram/0.5 microliter/side) were significantly higher than those assessed just after saline infusions, indicating a drug-induced attenuation of the rewarding effects of the brain stimulation. The effects of this dose subsided when tested 24 h later. Conversely, intra-PFC infusions of SCH 23390 at the same dose (0.5 microgram/0.5 microliter/side) resulted in lowered BSR thresholds when rats were tested immediately after infusion. In addition, animals tested 24 h after receiving the lowest dose (0.125 microgram/0.5 microliter/side) demonstrated a robust delayed threshold-lowering effect. These immediate and delayed effects of the intra-PFC dopamine antagonist demonstrate a facilitation of VTA BSR and are consistent with the view that PFC dopamine serves a modulatory role over important reward elements within the NAcc. The deferred effects of intra-prefrontal cortex DA receptor blockade on brain stimulation reward thresholds may reflect adaptive responses of subcortical structures to changes in PFC dopamine neurotransmission. It has been suggested that neural adjustments of this type may underlie long term changes in central nervous system functioning brought about by disease, drug use or behavioral conditioning. 相似文献
4.
The neurotransmitter serotonin (5-HT) induces rhythmic motor patterns (fictive locomotion) of the neonatal rat spinal cord in vitro; this is a useful experimental model to study the generation of a motor programme at exclusively spinal level. Nevertheless, 5-HT slows down the fictive locomotion typically elicited by activation of NMDA glutamate receptors, suggesting a complex action of this monoamine. By means of electrophysiological recordings from multiple ventral roots we demonstrated that the decrease caused by 5-HT in NMDA-induced periodicity was dose-dependent, enhanced after pharmacological blocking of 5-HT2 excitatory receptors, and imitated by pharmacological agonists of the 5-HT1 receptor family. Selective blockers of the 5-HT1A or 5-HT1B/D receptor classes, either alone or in combination, largely (but not completely) attenuated this inhibitory action of 5-HT. It is concluded that the principal inhibitory action of 5-HT on the spinal locomotor network was mediated by certain subtypes of the 5-HT1 receptor class, which tends to oppose the 5-HT2 receptor-mediated excitation of the same network. 相似文献
5.
SJ Vyas R Mokkapatti RK Dubey MR Chinoy EK Jackson 《Canadian Metallurgical Quarterly》1998,285(2):828-834
The purpose of our study was to determine whether Gi-mediated control over adenylyl cyclase in preglomerular arteriolar smooth muscle cells (PGASMC) is enhanced in the spontaneously hypertensive rat (SHR). PGASMC were cultured from preglomerular microvessels isolated from adult SHR (14-15 wk of age) and age-matched WKY rats. Confluent monolayers of cells in third passage were used for the experiments. cAMP released into the media (30 min) as well as cellular levels of cAMP were measured in the presence of a phosphodiesterase inhibitor, 1-isobutyl-3-methyl-xanthine (IBMX; 100 microM) and expressed as pmol/mg protein. Total (released + cellular) cAMP was significantly lower in SHR (14.19 +/- 2.30 pmol/mg protein) as compared with WKY (28.3 +/- 3.04 pmol/mg protein). Correspondingly, the released (4.6 +/- 0.4 pmol/mg protein) as well as cellular (9.78 +/- 2.18 pmol/mg protein) cAMP levels were also significantly lower in SHR when compared with WKY (8.85 +/- 1.26 and 18.86 +/- 2.0 pmol/mg protein, respectively). The steady-state levels of none of the Gi alpha subunits, namely Gi alpha 1, Gi alpha 2 and Gi alpha 3, were higher in the SHR PGASMC. Pertussis toxin treatment (PTX; 100 ng/ml; 24 hr) caused complete ADP-ribosylation of Gi alpha subunits in both WKY and SHR PGASMC. The same treatment of PTX also produced a significant increase in total cAMP in SHR, but not in WKY, such that the total cAMP levels after PTX treatment were not significantly different between the two strains. Interestingly, PTX significantly increased the released (20.26 +/- 0.90 pmol/mg protein) but not the cellular (13.63 +/- 1.63 pmol/mg protein) cAMP in SHR. Forskolin (1 microM) induced similar increases in total cAMP and isoproterenol (1 microM) caused greater increases in total cAMP in SHR cells compared with WKY cells. These data strongly suggest that in SHR PGASMC total adenylyl cyclase activity is not altered. Furthermore, steady-state expressions of Gi alpha-1, Gi alpha-2 and Gi alpha-3 are not increased whereas Gi-mediated inhibition of adenylyl cyclase is augmented in SHR PGASMC. 相似文献
6.
Role of the Y5 neuropeptide Y receptor in feeding and obesity 总被引:1,自引:0,他引:1
Removal of a plate from the distal femur creates a risk of fracture through the screw holes. This is a particular concern when a total knee arthroplasty is present because supracondylar fracture may occur with minimal trauma. A patient who presents after prior plating of a distal femur fracture with osteoporosis, retained hardware associated with pain, and gonarthrosis severe enough to warrant total knee arthroplasty is often difficult to manage. Prophylactic intramedullary rodding is a well-accepted method of treating pathologic stress risers in the femur. An intramedullary rod can be inserted into the femur at the time of total knee arthroplasty. This method permits simultaneous plate removal and total knee arthroplasty while protecting the femur from postoperative fracture. 相似文献
7.
Epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha) inhibit gastric acid secretion both in vivo and in vitro. Previous studies have indicated that EGF and TGF-alpha bind to the same EGF/TGF-alpha receptor. Nevertheless, we and others have previously demonstrated that inhibition of acid secretion by these growth factors requires concentrations of the peptides that are 10-fold higher than those necessary for induction of mitogenesis. Therefore, we have sought to investigate whether gastric parietal cells may possess a second EGF/TGF-alpha receptor class. Two systems were studied: First, [125I]TGF-alpha was cross-linked to the receptor in isolated rabbit parietal cell membranes, and labeled species were resolved on SDS-PAGE. Second, acid secretion was evaluated in pylorus-ligated waved-2 mutant mice, which carry a disabling point mutation in their classical EGF/TGF-alpha receptor. In isolated parietal cells, [125I]TGF-alpha was cross-linked into a single species of 170 kDa. Cross-linking was inhibited in the presence of unlabeled TGF-alpha with an IC50 of 80 nM. In the pylorus-ligated mice, control littermate mice demonstrated a dose-dependent inhibition of acid secretion by EGF with an IC50 of 20 micrograms/kg. In contrast, EGF had no inhibitory effect on acid secretion in waved-2 mice at concentrations up to 100 micrograms/kg. No alterations in parietal cell or gastrin cell numbers were observed. These results in both isolated rabbit parietal cells and waved-2 mice support the existence of only a single class of EGF/TGF-alpha receptors in parietal cells. Differences in growth factor affinity are likely due to the modification of the receptor or one of its coordinate regulators. 相似文献
8.
Adrenomedullin is a novel hypotensive peptide originally isolated from human pheochromocytoma and recently localized to PP cells of the pancreatic islets of Langerhans. Based on the pancreatic islet-acinar axis model, we investigated the effect of adrenomedullin on regulated exocytosis of exocrine pancreas. Using rat [125I]-adrenomedullin, specific binding sites were localized to rat pancreatic acini. We next examined the effect of adrenomedullin on 100 pM cholecystokinin (CCK)-stimulated amylase release from pancreatic acini. Adrenomedullin inhibited amylase secretion in a dose-dependent manner by approximately 50% at maximum, and the IC50 was 1.1 pM. However, adrenomedullin did not affect rat [125I]CCK binding to isolated acini or reduce the intracellular free Ca2+ concentration increased by CCK. Adrenomedullin also inhibited amylase secretion induced by 1 microM calcium ionophore A23187, suggesting that adrenomedullin inhibits stimulated amylase secretion by functioning at a step(s) distal to the ligand-receptor binding system and intracellular calcium mobilizing mechanism. In streptolysin-O permeabilized acini, 10 nM adrenomedullin shifted the calcium dose-response curve to the right, indicating that adrenomedullin inhibits calcium-induced amylase secretion by reducing calcium sensitivity of the pancreatic exocytotic machinery. In addition, pretreatment of pancreatic acini with pertussis toxin abolished the inhibitory effect of adrenomedullin on CCK-stimulated amylase secretion. These results indicate that adrenomedullin inhibits stimulated amylase secretion by reducing the calcium sensitivity of the exocytotic machinery of the pancreatic acini. A pertussis toxin-sensitive GTP-binding protein(s) is also involved in this mechanism. 相似文献
9.
MC Slootweg C Ohlsson EJ van Elk JC Netelenbos DL Andress 《Canadian Metallurgical Quarterly》1996,6(4):238-246
Osteoblast-like UMR-106.01 rat osteosarcoma cells express high affinity growth hormone (GH) receptors (GHRs). Because osteoblasts secrete insulin-like growth factor binding protein-5 (IGFBP-5), we evaluated whether it also modulates GH binding and GHR expression in UMR cells. Human recombinant intact IGFBP-5 stimulated 125I-hGH binding in a dose-dependent manner (dose range 300-3000 ng/ml), inducing an increase to 193.6 +/- 2.1% of control binding at 3000 ng/ml (P < 0.001). Carboxy-truncated IGFBP-5 also stimulated GH binding but with less potency (125 +/- 2.7% of control at 3000 ng/ml, P < 0.01). GHRs identified by chemical crosslinking of 125I-hGH to cell monolayers increased after treatment with IGFBP-5 and decreased in response to insulin-like growth factor-I (IGF-I). GHR mRNA levels, as quantitated by a solution hybridization RNAse protection assay, increased up to 3 to 7-fold in a time-dependent manner by intact IGFBP-5 but not by carboxy-truncated IGFBP-5. An antiserum to IGFBP-5 reduced basal GH binding to 56.7 +/- 4.3% of control value at a concentration of 0.5% (P < 0.001), showing that IGFBP-5 produced by the cells is a strong regulator of GH binding. IGFBP-5 antiserum also decreased GH binding to 85.9 +/- 0.9% of IGFBP-5 stimulated value (P < 0.001), showing the specificity of IGFBP-5 stimulation. To determine whether the GHR upregulation was physiologically significant, cell proliferation was evaluated after coincubation of IGFBP-5 with low, non-stimulatory concentrations of GH. IGFBP-5 (1000 ng/ml) induced cell proliferation to 116.2 +/- 3.2% of control levels, and coincubation with hGH at 10 ng/ml induced an increase to 133.3 +/- 0.1% of control levels. We conclude that exogenous and endogenous IGFBP-5 upregulate GHR mRNA levels and GH binding and this interaction potentiates GH-stimulated mitogenesis in osteoblastic cells. 相似文献
10.
H Herzog K Darby H Ball Y Hort A Beck-Sickinger J Shine 《Canadian Metallurgical Quarterly》1997,41(3):315-319
We have recently developed approaches for the generation of encephalitogenic T cell clones from mouse strains considered resistant to experimental allergic encephalomyelitis (EAE). By allowing for the direct use of knockout and mutant strains of mice, such clones allow for the efficient characterization of the relevance of specific gene products in the effector phase of EAE. Recent studies have suggested that Fas/FasL-mediated cell death may play a role in the pathogenesis of MS. To assess the role of Fas/FasL in EAE, we have tested the ability of wild-type C57BL/6-derived, encephalitogenic T cell clones to mediate adoptively transferred EAE in Fas-deficient C57BL/6-lpr mice. We now report that mice with the lpr mutation are fully susceptible to the adoptive transfer of EAE. Our results suggest that Fas/FasL-mediated cell death in the central nervous system does not play an integral role in the effector phase of acute EAE. 相似文献
11.
M Yoneda K Nakamura S Yokohama K Tamori Y Sato K Aso M Aoshima T Kono I Makino 《Canadian Metallurgical Quarterly》1998,28(3):670-676
Neuropeptide Y (NPY) injected into the cerebrospinal fluid and the left dorsal vagal complex enhances bile acid-independent and bicarbonate-dependent bile secretion through vagal muscarinic pathways in animal models. NPY binds to and activates six different receptor subtypes, and NPY Y1 and Y2 receptors are distributed in the dorsal vagal complex. We sought to determine which NPY receptor subtypes are involved in central stimulation of bile secretion by examining the effect of microinjection of specific NPY receptor agonists into the dorsal vagal complex. The bile duct was cannulated in urethane-anesthetized and bile acid-compensated rats. After measuring basal secretion, NPY, peptide YY (PYY), [Leu31, Pro34]NPY, NPY(13-36), or NPY(3-36) was microinjected into the either right or left dorsal vagal complex and bile secretion was observed for 100 minutes. Hepatic branch vagotomy was performed 2 hours before the peptide injection. Microinjection of NPY and PYY (8 pmol) into the left dorsal vagal complex increased bile secretion. [Leu31, Pro34]NPY microinjected into the left dorsal vagal complex also dose-dependently (1-8 pmol) stimulated bile acid-independent and bicarbonate-dependent bile secretion. Microinjection of NPY(13-36) into the left dorsal vagal complex did not stimulate and NPY(3-36) dose-dependently inhibited bile secretion. Stimulation of bile secretion by [Leu31, Pro34]NPY was abolished by hepatic branch vagotomy. NPY acts in the left dorsal vagal complex to stimulate bile acid-independent and bicarbonate-dependent bile secretion via Y1 receptor subtype. 相似文献
12.
Activation of beta adrenergic receptors in the isolated rabbit heart by catecholamines stimulates prostacyclin (PGI2) synthesis, which is inhibited by adenosine 3'5'-cyclic monophosphate (cAMP). The purpose of this study was to determine if activation of beta adrenergic receptors in cultured coronary endothelial cells (CEC) of rabbit heart with isoproterenol (ISOP) stimulates PGI2 synthesis and if cAMP inhibits the synthesis of this prostanoid and to investigate the underlying mechanism. Incubation of CEC with ISOP increased production of cAMP and PGI2, measured as immunoreactive cAMP and 6-keto-prostaglandin F1alpha, (6-keto-PGF1alpha), respectively. Forskolin, an activator of adenylyl cyclase, increased cAMP accumulation and inhibited ISOP-stimulated 6-keto-PGF1alpha synthesis. 8-(4-chlorophenyl-thio) cAMP also inhibited ISOP-induced 6-keto-PGF1alpha production. However, miconazole, an inhibitor of adenylyl cyclase, reduced cAMP accumulation and enhanced ISOP-stimulated 6-keto-PGF1alpha synthesis in CEC. ISOP-induced 6-keto-PGF1alpha synthesis was attenuated by C2-ceramide, an inhibitor of phospholipase D (PLD) by propranolol, a beta-AR antagonist that also inhibits phosphatidate phosphohydrolase and by the diacylglycerol lipase inhibitor 1,6-bis-(cyclohexyloximinocarbonylamino)-hexane (RHC 80267). Acetylcholine (ACh) induced 6-keto-PGF1alpha synthesis was also inhibited by these agents. Both ISOP and ACh increased PLD activity, which was inhibited by C2-ceramide but not by RHC 80267 or propranolol. ACh but not ISOP increased phospholipase A2 activity in CEC. ISOP- but not ACh-induced increase in PLD activity was attenuated by forskolin and 8-(4-chlorophenyl-thio)-adenosine 3'-5'-cyclic monophosphate and augmented by miconazole. These data suggest that beta adrenergic receptors activation promotes PGI2 synthesis in the CEC by selective activation of PLD and that cAMP decreases PGI2 synthesis by decreasing PLD activity. Moreover, beta adrenergic receptors activated PLD appears to be distinct from that stimulated by ACh. 相似文献
13.
1. 5-Hydroxytryptamine (5-HT) exerts both contractile and relaxant effects in the marmoset isolated aorta, actions that are unaffected by the 5-HT2 antagonist ketanserin. The aim of the present study was to define the receptors mediating the contractile activity of 5-HT in the marmoset aorta. 2. Contractile responses were elicited in aortic rings that were either: (i) precontracted submaximally with the thromboxane A2 agonist U44069 in order to amplify the responses; or (ii) exposed to N(omega)-nitro-L-arginine (100 micromol/L) plus LY 53857 (0.1 micromol/L; a 5-HT2 receptor antagonist shown previously to inhibit relaxation). The effect of 5-HT on adenosine 3',5'-cyclic monophosphate (cAMP) formation was also investigated. 3. The effects of agonists and antagonists comprised: (i) agonist potencies in the order 5-carboxamidotryptamine > 5-HT > sumatriptan > 8-hydroxy-2-(di-n-propylamino)tetralin; (ii) inhibition of contractile action of 5-HT by the 5-HT1D antagonist GR 127935; (iii) a contractile response to methysergide; (iv) a lack of effect of tropisetron, an antagonist of 5-HT3 and 5-HT4 receptors; and (v) inhibition of forskolin-stimulated cAMP formation by 5-HT (in the presence of LY 53857), indicative of negative coupling to adenylate cyclase. 4. The above effects fulfill the criteria for a 5-HT1-like receptor. In view of the previous finding that this contractile response is insensitive to ketanserin, it is concluded that the contractile effects of 5-HT in the marmoset aorta are mediated exclusively by a 5-HT1-like receptor. 相似文献
14.
Neuropeptide Y (NPY) is both co-stored and co-released with noradrenaline from sympathetic nerve terminals. In the cardiovascular system, NPY acts on two main receptor subtypes. At postjunctional, or Y1 receptors, NPY can cause both direct vasoconstriction and the potentiation of various constrictor agents. NPY acting at the presynaptic, or Y2 receptor, inhibits the release of neurotransmitter from autonomic nerves. In the present paper, we have used both sympathetic stimulation and the selective NPY Y2 receptor agonist, N-acetyl [Leu28,Leu31] NPY24-36, to examine the role of NPY in the inhibition of vagally mediated vasodilatation in the bronchial circulation of the anaesthetised dog. Stimulation of the cardiac end of the cervical vagus nerve at 1 Hz for 15 s (1 ms, 70 V) increased bronchial vascular conductance by 45%. This increase in flow was abolished by atropine. Sympathetic stimulation for 2.5 min at 16 Hz (1 ms, 20 V) produced a significant (P < 0.05) and prolonged (9 min) inhibition of the subsequent parasympathetically evoked vasodilatation. Similarly, the NPY Y2 receptor agonist, N-acetyl [Leu28,Leu31] NPY24-36, produced a significant (P < 0.05) and prolonged (15 min) inhibition of parasympathetically evoked vasodilatation. When vagus was stimulated at 2.5 Hz for 30 s (1 ms, 70 V), an atropine-resistant, but capsaicin-sensitive vasodilatation was observed. Neither sympathetic stimulation nor the NPY Y2 receptor agonist could be demonstrated to inhibit this vasodilatation. These results suggest that NPY can inhibit cholinergic parasympathetic vasodilatation in the bronchial circulation by an action on NPY Y2 receptors. 相似文献
15.
SR Glaum RJ Miller H Rhim D Maclean LM Georgic RG MacKenzie L Grundemar 《Canadian Metallurgical Quarterly》1997,120(3):481-487
Archival material from primary and metastatic renal clear cell carcinomas of 25 patients was studied by comparative genomic hybridization. Copy number changes of entire chromosomes or chromosomal subregions were detected in 22 primary and 21 metastatic tumors. Copy number changes affected the following chromosomes in at least 20% of the 25 primary tumors (minimal common region given in parentheses): gains were noted for chromosomes 1 (1q21-->q23), 5 (5q31-->q34), 7 (7p), 8 (8q), 16 (16p), 17 (17q12-->qter), 19, and 22 (22q12-->qter); losses were revealed for chromosomes 3 (3p21-->pter), 8 (8p23-->pter), 14(14q21-->qter), and Y. The same chromosomal regions that were involved in primary renal clear cell carcinomas were also found in the respective metastatic tumors but with strikingly different frequencies for a few regions. Metastatic tumors showed a significantly higher frequency of complete or partial gains of the long arm of chromosome 1, in particular at 1q21-->q23 than primary tumors (16 cases versus 6 cases; P < 0.005). These data suggest a correlation of metastatic events in renal clear cell carcinomas with an increase in the copy number of genes located at 1q, in particular at 1q21-->q23. In contrast, the entire or partial loss of the short arm of chromosome 3 was significantly less frequent in metastatic tumors (8 cases versus 15 cases; P < 0.025). The validity of 1q and 3p copy number changes detected by comparative genomic hybridization was confirmed by interphase cytogenetics with region-specific yeast artificial chromosomes to paraffin-embedded tumor tissue sections. 相似文献
16.
B Gliozzo CK Sung P Scalia V Papa F Frasca L Sciacca F Giorgino G Milazzo ID Goldfine R Vigneri V Pezzino 《Canadian Metallurgical Quarterly》1998,70(2):268-280
The projections of enteric neurons to the circular muscle of the guinea pig gastric corpus were investigated systematically by using the retrogradely transported fluorescent carbocyanine dye 1,1'-didodecyl-3,3,3',3'-tetramethyl indocarbocyanine perchlorate (DiI), applied to the muscle layer or myenteric plexus in vitro. DiI-labeled motor neuron cell bodies were located up to 6.3 mm aboral, 17 mm oral, and up to 20 mm circumferential to the DiI application site. Labeled nerve fibers ran for long distances from the DiI application site toward the greater and lesser curvatures, where they coursed parallel to the bundles of the "gastric sling" muscle. The majority of labeled cells were located toward the lesser curvature of the stomach. Nerve cell bodies that were aboral to the DiI application site were usually small, immunoreactive for choline acetyltransferase, and, thus, were likely to be excitatory motor neurons. Neurons that were located orally were larger, fewer in number, and immunoreactive for nitric oxide synthase and, thus, were likely to be inhibitory motor neurons. Application of DiI directly to the myenteric plexus filled neurons up to 15 mm aborally and up to 21 mm orally but labeled few neurons circumferentially. All nerve cells that were filled from either the circular muscle or the myenteric plexus had Dogiel type I morphological features. These results demonstrate a clear polarity of projection of inhibitory and excitatory motor neurons and a functionally continuous innervation of the circular and gastric sling muscle layers. Nonmotor neurons in the myenteric plexus were demonstrated, but neurons with Dogiel type II morphological features are apparently absent. 相似文献
17.
F Cartier I Remy-Jouet A Fournier H Vaudry C Delarue 《Canadian Metallurgical Quarterly》1997,138(10):4358-4363
We have previously reported that endothelin-1 (ET-1) stimulates the in vitro secretion of corticosterone and aldosterone from the adrenal gland of the frog Rana ridibunda. The aim of the present study was to investigate the pharmacological profile of the endothelin receptor subtype involved in the corticotropic effect of ET-1. The mixed ET(A)/ET(B) receptor antagonist Ro 47-0203 (10(-5) M) totally blocked the stimulatory effect of ET-1 (5 x 10(-9) M) on corticosterone and aldosterone secretion. The action of ET-1 was also inhibited by the selective ET(A) receptor antagonist BQ-485 (10(-7) M). In contrast, the selective ET(B) receptor antagonist IRL 1038 (10(-6) M) did not affect the response of the frog adrenal gland to ET-1. In addition, the selective ET(B) receptor agonist IRL 1620 (10(-6) M) did not mimic the stimulatory effect of ET-1. The high affinity ET(C) receptor agonist endothelin-3 (ET-3) stimulated corticosteroid secretion, but was 400 times less potent than ET-1. Moreover, the action of ET-3 was also blocked by BQ-485 (10(-7) M). These data indicate that the stimulatory effects of ET-1 and ET-3 on corticosteroid secretion by the frog adrenal gland are mediated by an ET(A) receptor subtype. 相似文献
18.
19.
Obese Zucker rats are characterized by a reduced hypothalamic NPY receptor density. We tested the effects of intracerebroventricular injections of human NPY (hNPY) and [D-Trp32]NPY, a weak but selective NPY Y5 receptor agonist, on food intake in lean and obese Zucker rats. The effect of a maximal dose of hNPY (10 microg) on feeding was more pronounced in lean than in obese rats. [D-Trp32]NPY (10 microg) stimulated feeding in lean but not in obese Zucker rats. It did not affect the feeding response to hNPY, excluding the activation of an inhibitory receptor. These results are in favor of a down-regulation of the NPY 'feeding' receptor in the obese rat, which is suggested to be the Y5 subtype. 相似文献
20.
Our group previously reported an assay for the study of lymphocyte adhesion to insulin-producing cells in which xenogeneic rat insulinoma (RIN) cells were used as targets. The present study found an increased number of RIN-cytoadherent lymphocytes in 63 patients with Type 1 diabetes compared with 150 control subjects and in 211 NOD mice compared with 104 BALB/c mice (p < 0.001). Proteins concentrated from spontaneous RIN cell culture supernatants inhibited increased RIN-adhesion of NOD splenocytes or lymphocytes from diabetic patients (p < 0.001). In addition, increased RIN binding was dose-dependently abolished by RIN membrane extracts. The fact that RIN binding was inhibited by proteins from both membrane and the culture supernatant from RIN cells suggests that soluble inhibitory proteins were spontaneously released into the supernatant from a hydrophobic membrane-bound form. This tended to be confirmed since inhibition obtained with both preparations involved a 55-75 kDa HPLC protein fraction. The possibility that the membrane form of the inhibitory protein was anchored by a glycosylphosphatidylinositol (GPI) tail was evaluated. When RIN cells were treated with PI-PLC, their ability to bind lymphocytes from diabetic patients or NOD splenocytes decreased (p < 0.001) to control levels. Co-incubation with the 55-75 kDa fraction of proteins cleaved from RIN cells by PI-PLC also lowered the number of RIN-adherent NOD splenocytes to control levels. SDS-PAGE and IEF analyses of the 55-75 kDa inhibitory fraction from RIN cell supernatant revealed a major band with Mr 66 kDa and PI5.4, which may correspond to a protein with similar characteristics noted on 2-D electrophoresis of proteins cleaved from RIN cells by PI-PLC. Specific labelling of GPI moieties with 3H-ethanolamine, 3H-glucosamine, or 14C-glucosamine, as well as conversion of the hydrophobic Triton-X114 solubilised form into a hydrophilic form after PI-PLC treatment, confirmed the presence of a GPI anchor in this approximately 66 kDa RIN protein, which could thus be the molecule inhibiting adhesion in the system. Our data suggest that GPI-proteins from insulin-producing cells may influence the immune system both in their membrane-anchored and soluble forms. When considering the binding model, in which beta cells were tumoral and xenogeneic to diabetic lymphocytes, this potential influence of GPI-proteins suggests possible implications in situations of lymphocyte-beta cell interaction, i.e. anti-beta cell autoimmunity, immune reaction against insulinomas, and reaction against islet xenografts. 相似文献