首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of H2O2 on the Pt dissolution in 0.5 mol dm−3 H2SO4 was investigated using an electrochemical quartz crystal microbalance (EQCM). For the potential cycling at 50 mV s−1, the Pt weight irreversibly decreases in a N2 atmosphere with H2O2, while only a negligible Pt weight-loss is observed in the N2 and O2 atmospheres without H2O2. The EQCM data measured by the potential step showed that the Pt dissolution in the presence of H2O2 depends on the electrode potential and the H2O2 concentration. For the stationary electrolysis, the Pt dissolution occurs at 0.61–1.06 and 1.06–1.36 V vs. RHE. It should be noted that the Pt dissolution phenomenon in the presence of H2O2 is also affected by the potential scanning time. Based on these results, H2O2 is considered not only to contribute to the formation of Pt-oxide causing the cathodic Pt dissolution, but also to participate in the anodic Pt dissolution and the chemical Pt dissolution.  相似文献   

2.
The paper reports first on the electrochemical behavior in liquid Li+ electrolytes of 200 nm thick single sol-gel (CeO2)0.81-TiO2 electrochromic (EC) layers deposited by the dip-coating process. The electrolytes were solutions of 1 M LiClO4 dissolved in dry propylene carbonate (PC) (containing 0.03 wt% of water) and wet PC containing up to 10 wt% of water, respectively. Then an electrochemical quartz crystal microbalance was used as a sensitive detector to analyze the mass changes occurring during the Li+ ion exchange processes. These electrochemical processes were studied for 370 nm thick double layers, deposited on gold-coated quartz crystal electrodes and sintered at 450 °C in air. The electrolytes were the same solutions with water content varying from 0.03 up to 3 wt% of water. The processes have been studied in the potential range from −2.0 to +1.0 V vs. Ag/AgClO4 during 100 voltammetry cycles. The composition of the (CeO2)0.81-TiO2 layers was found to change during the early cycles, mainly because of an irreversible Li+ intercalation. It was found, however, that the mass change observed during cycling is not due only to a pure Li+ ion exchange process but also involves the adsorption/desorption or exchange of other cations and anions contained in the electrolyte. These ions are Li+ and ClO4 in dry electrolyte and Li+, hydrated Li(H2O)n+ and ClO4 in wet electrolyte. The improvement of the reversibility of the intercalation and deintercalation processes as well as the faster kinetics observed in wet electrolytes are finally discussed in terms of a model in which the formation of hydrated Li+ ions takes an important role.  相似文献   

3.
During the voltammetry of carbon supports for proton exchange membrane fuel cells (PEMFCs), including commercial carbon blacks, graphitized carbon black and multi-wall carbon nanotubes (MWNTs), in deaerated 0.5 M H2SO4 solution results in mass changes as observed by using in situ electrochemical quartz crystal microbalance (EQCM). The mass change and corrosion onset potential during electrochemical carbon corrosion indicate that oxides are formed and accumulated on the carbon surface, leading to an increase in mass. A decrease in the mass is associated with carbon loss from the gasification of carbon surface oxides into carbon dioxide. High BET surface area carbon blacks ECP600 and ECP 300 have a carbon loss of 0.0245 ng cm−2 s−1 and 0.0144 ng cm−2 s−1 and as compared to 0.0115 ng cm−2 s−1 for low surface area support XC-72 and so they are less resistant to corrosion. Graphitized XC-72 and MWNTs, with higher graphitization have higher carbon corrosion onset potential at 1.65 V and 1.62 V and appear to be more intrinsically resistant to corrosion.  相似文献   

4.
For hydrogen to become a serious contender for replacing fossil fuels, the manufacturing thereof has to be further investigated. One such process, the membrane based Hybrid Sulfur (HyS) process, where hydrogen is produced from the electrolysis of SO2, has received considerable interest recently. Since H2SO4 is formed during SO2 electrolysis, H2SO4 stability is a prerequisite for any membrane to be used in this process. In this study, pure as well as blended polybenzimidazole (PBI), partially fluorinated poly(arylene ether) (sFS) and nonfluorinated poly(arylene ethersulfone) (sPSU) membranes were investigated in terms of their acid stability as a function of acid concentration. Membranes were characterized using weight change, TGA, GPC, SEM/EDX and IEC. While a general stability was observed at 30 and 60 wt% H2SO4, the blended sFS-PBI and sPSU-PBI showed the highest stability throughout. According to the VI curve obtained for the SO2 electrolysis, the sPSU-PBI blend membrane performed slightly better than Nafion®117.  相似文献   

5.
The influence of redox-treated Pt/TiO2 photocatalysts on H2 production is investigated. Catalyst characterizations are performed by TEM, XPS, XRD, BET, and UV–vis/DR spectroscopy techniques. In terms of production rate, the oxidation treatment shows higher reactivity than the reduction treatment. The reduction treatment allows the formation of metallic Pt(0), which more easily catalyzes the transition of TiO2 from the anatase to the rutile phases. Reduction-treated Pt/TiO2 photocatalysts have lower SBET values than oxidation-treated Pt/TiO2 photocatalysts due to the higher percentage of TiO2 in the rutile phase. Combining the results of XPS and optical analyses, PtO/TiO2 shows a higher energy band gap than metallic Pt(0)/TiO2, indicating that oxidation-treated Pt/TiO2 is more capable of achieving water splitting for H2 production. According to the results of this study, the oxidation treatment of Pt/TiO2 photocatalysts can significantly enhance the reactivity of photocatalytic H2 production because of their homogenous distribution, lower phase transition, higher SBET, and higher energy band gap.  相似文献   

6.
Lithium aluminum hydride (LiAlH4) is considered as an attractive candidate for hydrogen storage owing to its favorable thermodynamics and high hydrogen storage capacity. However, its reaction kinetics and thermodynamics have to be improved for the practical application. In our present work, we have systematically investigated the effect of NiCo2O4 (NCO) additive on the dehydrogenation properties and microstructure refinement in LiAlH4. The dehydrogenation kinetics of LiAlH4 can be significantly increased with the increase of NiCo2O4 content and dehydrogenation temperature. The 2 mol% NiCo2O4-doped LiAlH4 (2% NCO–LiAlH4) exhibits the superior dehydrogenation performances, which releases 4.95 wt% H2 at 130 °C and 6.47 wt% H2 at 150 °C within 150 min. In contrast, the undoped LiAlH4 sample just releases <1 wt% H2 after 150 min. About 3.7 wt.% of hydrogen can be released from 2% NCO–LiAlH4 at 90 °C, where total 7.10 wt% of hydrogen is released at 150 °C. Moreover, 2% NCO–LiAlH4 displayed remarkably reduced activation energy for the dehydrogenation of LiAlH4.  相似文献   

7.
CuCr2O4/TiO2 heterojunction has been successfully synthesized via a facile citric acid (CA)-assisted sol-gel method. Techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectrum (UV-vis DRS) have been employed to characterize the as-synthesized nanocomposites. Furthermore, photocatalytic activities of the as-obtained nanocomposites have been evaluated based on the H2 evolution from oxalic acid solution under simulated sunlight irradiation. Factors such as CuCr2O4 to TiO2 molar ratio in the composites, calcination temperature, photocatalyst mass concentration, and initial oxalic acid concentration affecting the photocatalytic hydrogen producing have been studied in detail. The results showed that the nanocomposite of CuCr2O4/TiO2 is more efficient than their single part of CuCr2O4 or TiO2 in producing hydrogen. The optimized composition of the nanocomposites has been found to be CuCr2O4·0.7TiO2. And the optimized calcination temperature and photocatalyst mass concentration are 500 °C and 0.8 g l−1, respectively. The influence of initial oxalic acid concentration is consistent with the Langmuir model.  相似文献   

8.
During PEM fuel cell operation, formation of H2O2 and material corrosion occurs, generating trace amounts of metal cations (i.e., Fe2+, Pt2+) and subsequently initiating the deterioration of cell components and, in particular, PFSA membranes (e.g., Nafion). However, most previous studies of this have been performed using conditions not relevant to fuel cell environments, and very few investigations have studied the effect of Nafion decomposition on conductivity, one of the most crucial factors governing PEMFC performance. In this study, a quantitative examination of properties and conductivities of degraded Nafion membranes at conditions relevant to fuel cell environments (30-100%RH and 80 °C) was performed. Nafion membranes were pre-ion-exchanged with small amounts of Fe2+ ions prior to H2O2 exposure. The degradation degree (defined as loss of ion-exchange capacity, weight, and fluoride content), water uptake, and conductivity of H2O2-exposed membranes were found to strongly depend on Fe content and H2O2 treatment time. SEM cross-sections showed that the degradation initially took place in the center of the membrane, while FTIR analysis revealed that Nafion degradation preferentially proceeds at the sulfonic end group and at the ether linkage located in the pendant side chain and that the H-bond of water is weakened after prolonged H2O2 exposure.  相似文献   

9.
Thermal decomposition of (NH4)2SO4 in presence of Mn3O4   总被引:1,自引:0,他引:1  
The main objective of this work is to develop a hybrid water-splitting cycle that employs the photon component of sunlight for production of H2 and its thermal (i.e. IR) component for generating oxygen. In this paper, (NH4)2SO4 thermal decomposition in the presence of Mn3O4, as an oxygen evolving step, was systematically investigated using thermogravimetric/differential thermal analyses (TG/DTA), temperature programmed desorption (TPD) coupled with a mass spectrometer (MS), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS) techniques. Furthermore, thermolysis of ammonium sulfate, (NH4)2SO4, in the presence of Mn3O4 was also investigated by conducting flow reactor experiments. The experimental results obtained indicate that at 200-450 °C, (NH4)2SO4 decomposes forming NH3 and H2O and sulfur trioxide that in the presence of manganese oxide react to form manganese sulfate, MnSO4. At still higher temperatures (800∼900 °C), MnSO4 further decomposed forming SO2 and O2.  相似文献   

10.
Cu0.04V2O5 was prepared by a precipitation method followed by heat treatment at 300 and 600 °C. The material prepared at 300 °C showed porous morphology, whereas that prepared at 600 °C was highly crystalline. X-ray diffraction, Raman scattering and Fourier transform infrared spectroscopy showed both materials exhibiting the same structure as that of V2O5, with a slight lattice expansion. X-ray absorption spectroscopy confirmed the presence of V4+ cations in Cu0.04V2O5, which would increase the electronic conductivity of V2O5. Cu0.04V2O5 showed better electrochemical performance than V2O5 because of its high electronic conductivity and good structural stability. The material prepared at 600 °C delivered a reversible discharge capacity over 160 mAh g−1 after 60 cycles at a C rate of C/5.6. The material prepared at 300 °C showed good high-rate performance, which delivered a reversible capacity ∼100 mAh g−1 when cycled at C/1.9. The discrepancy in the rate performance of Cu0.04V2O5 was attributed to the morphology of materials.  相似文献   

11.
One-dimensional (1D) Pt/TiO2 hybrid nanofibers (HNFs) with different concentrations of Pt were fabricated by a facile two-step synthesis route combining an electrospinning technique and calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) results showed that the Pt nanoparticles (NPs) with the size of 5–10 nm were well dispersed in the TiO2 nanofibers (NFs). Further investigations from the UV–Vis diffuse reflectance (DR) and X-ray photoelectron spectroscopy (XPS) analysis revealed that some Pt ions were incorporated into the TiO2 lattice as Pt4+ state, which contributed to the visible light absorption of TiO2 NFs. Meanwhile, the Pt2+ ions existing on the surface of Pt NPs resulted in the formation of Pt–O–Ti bond at Pt NPs/TiO2 NFs interfaces that might serve as an effective channel for improving the charge transfer. The as-electrospun Pt/TiO2 HNFs exhibited remarkable activities for photocatalytic H2 evolution under visible light irradiation in the presence of l-ascorbic acid as the sacrificial agent. In particular, the optimal HNFs containing 1.0 at% Pt showed the H2 evolution rate of 2.91 μmol h−1 and apparent quantum efficiency of 0.04% at 420 nm by using only 5 mg of photocatalysts. The higher photocatalytic activity could be ascribed to the appropriate amount of Pt ions doping and excellent electron-sink effect of Pt NPs co-catalysts.  相似文献   

12.
Ti/PbO2 + nano-Co3O4 composite electrode materials with different compositions were prepared by anodic composite electrodeposition on Ti substrate, with a SnO2-Sb2O5 intermediate layer in Pb2+ plating solution containing suspended nano-Co3O4 particles. The composition, structure, and morphology of the composite materials were investigated by XRD, XPS, and SEM analyses. The composite electrodes were studied as anodes for oxygen evolution reaction (OER) in 1 mol/L NaOH solution. The activities for the OER of the composites were explained by recording linear scanning voltammograms and Tafel plots. Results indicate that the onset potential of oxygen evolution at the composite electrode was lowered by approximately 160 mV compared to the PbO2 electrode without nano-Co3O4. The catalytic activity of the composite electrode towards OER was improved significantly.  相似文献   

13.
Pt–Cu catalysts supported on Al2O3 and Nb2O5 were studied for use in selective CO oxidation. The addition of copper enhanced the activity and selectivity of Pt–Cu/Nb2O5 at lower temperatures when compared to Pt/Nb2O5. On the other hand, copper addition was not beneficial in the case of Al2O3 supported catalysts.  相似文献   

14.
Well-defined SnNb2O6 nanoplates are synthesized here by a facile template-free solvothermal route in a mixed solvent of water and ethanol without an organic surfactant. The synthesized nanoplates have widths ranging from 200 to 400 nm and thicknesses in a range of 20–30 nm. The nanoplates were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV–Vis spectroscopy, Raman spectrometry, and by the Brunauer–Emmett–Teller method. The variation of the lattice parameters and the optical properties of the nanoplates were discussed in detail based on the crystal and electronic structure. The SnNb2O6 nanoplates exhibited greatly enhanced photocatalytic activity in terms of the reduction of water for H2 generation under visible light irradiation as compared to the same compound prepared by a solid–state reaction method. This was mainly attributed to its higher surface area and extremely high two-dimensional anisotropy, which provided a short migration distance along the thickness direction.  相似文献   

15.
This study investigated the effect of Nd2O3 and Gd2O3 as catalyst on hydrogen desorption behavior of NaAlH4. Pressure-content-temperature (PCT) equipment measurement proved that both two oxides enhanced the dehydrogenation kinetics distinctly and increasing Nd2O3 and Gd2O3 from 0.5 mol% to 5 mol% caused a similar effect trend that the dehydrogenation amount and average dehydrogenation rate increased firstly and then decreased under the same conditions. 1 mol% Gd2O3–NaAlH4 presented the largest hydrogen desorption amount of 5.94 wt% while 1 mol% Nd2O3–NaAlH4 exerted the fastest dehydrogenation rate. Scanning Electron microscopy (SEM) analysis revealed that Gd2O3–NaAlH4 samples displayed uniform surface morphology that was bulky, uneven and flocculent. The difference of Nd2O3–NaAlH4 was that with the increasing of Nd2O3 content, the particles turned more and more big. Compared to dehydrogenation behavior, this phenomenon demonstrated that small particles structure were beneficial to hydrogen desorption. Besides, the further study found that different catalysts and addition amounts had different effects on the microstructure of NaAlH4.  相似文献   

16.
The influence of sulfuric acid concentration on negative plate performance has been studied on 12 V/32 Ah lead-acid batteries with three negative and four positive plates per cell, i.e. the negative active material limits battery capacity. Initial capacity tests, including C20 capacity, cold cranking ability and Peukert tests, have been carried out in a wide range of sulfuric acid concentrations (from 1.18 to 1.33 sp.gr.). High initial capacity and good CCA performance were registered for batteries with acid concentration between 1.24 and 1.30 sp.gr. The charge acceptance depends on acid concentration as well as on battery state of charge. Batteries with high SoC exhibit high charge acceptance at low acid concentrations. The cycle life tests at two discharge rates (10 and 3 h discharge) evidence that sulfuric acid concentration exerts a strong effect on negative plate performance. The cycle life of batteries decreases with increase of acid concentration. The obtained results demonstrate the high impact of lead sulfate solubility on the cycle life and charge efficiency of lead-acid batteries.  相似文献   

17.
The polarization behaviors of platinum electrode were investigated with a single cell employing CsH2PO4/SiP2O7-based composite electrolyte. The electrochemical measurements were conducted in the temperature range of 180–240 °C under various humidity conditions. The cell performance was enhanced during several discharge cycles, and then the steady state was attained. The active triple phase boundary (TPB) appears to be spontaneously formed. The polarization behaviors for both anode and cathode were strongly affected by the electrolyte conductivity due to its humidity dependence. In accordance with this tendency, the maximum performance was achieved at 220 °C in 30% humidified condition whereas the deterioration was observed at 240 °C. Throughout the analysis, however, the performance limitation was mainly due to cathodic polarization at every condition. The cathodic overpotential showed a linear dependence against the log of current density at each temperature, which can be expressed as a Tafel equation. Then, the influence of steam concentration and temperature on the electrochemical kinetics was also discussed.  相似文献   

18.
The nano-sized columned β-FeOOH was prepared by the hydrolysis process and its electrochemical capacitance performance was evaluated for the first time in Li2SO4 solution. A hybrid supercapacitor based on MnO2 positive electrode and FeOOH negative electrode in Li2SO4 electrolyte solution was designed. The electrochemical tests demonstrated that the hybrid supercapacitor has a energy density of 12 Wh kg−1 and a power density of 3700 W kg−1 based on the total weight of the electrode active materials with a voltage range 0–1.85 V. This hybrid supercapacitor also exhibits a good cycling performance and keeps 85% of initial capacity over 2000 cycles.  相似文献   

19.
The all-solid-state Li–In/Li4Ti5O12 cell using the 80Li2S·20P2S5 (mol%) solid electrolyte was assembled to investigate rate performances. It was difficult to obtain the stable performance at the charge current density of 3.8 mA cm−2 in the all-solid-state cell. In order to improve the rate performance, the pulverized Li4Ti5O12 particles were applied to the all-solid-state cell, which retained the reversible capacity of about 90 mAh g−1 at 3.8 mA cm−2. The 70Li2S·27P2S5·3P2O5 glass–ceramic, which exhibits the higher lithium ion conductivity than the 80Li2S·20P2S5 solid electrolyte, was also used. The Li–In/70Li2S·27P2S5·3P2O5 glass–ceramic/pulverized Li4Ti5O12 cell was charged at a current density higher than 3.8 mA cm−2 and showed the reversible capacity of about 30 mAh g−1 even at 10 mA cm−2 at room temperature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号