首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Divalent DNA-AuNP (gold nanoparticle) conjugates comprising two DNA strands at diametrically opposed positions are prepared. Highly linear 1D and tetragonal lattice-like 2D AuNP arrays are constructed using the conjugates and DNA assemblies based on T- and double-crossover motifs and the Holliday junction.  相似文献   

2.
In this work we report on the formation of ordered monolayers (2-D) and arrays of rods (3-D) of magnetic Co nanoparticles in magnetic field perpendicular to the substrate surface. Samples were prepared by drying a droplet of colloidal solution of Co nanoparticles (10 nm diameter) on Si/Si3N4 substrates in magnetic field between 0.2 and 0.9 T. The samples were characterized by high resolution scanning electron microscopy (SEM), atomic and magnetic force microscopy (AFM/MFM) and grazing incidence small angle X-ray scattering (GISAXS). SEM studies of monolayers show well-ordered 2-D arrays with hexagonal symmetry of 200 nm × 500 nm in size forming a mosaic structure. Rods, about 500 nm in diameter, aligned with the field direction and forming a hexagonal pattern were obtained when higher concentration of colloid and low evaporation rate of the solvent were used. The ordering of nanoparticles in the monolayer analyzed by GISAXS is described by the local order with hexagonal symmetry. The model of close packing of hard spheres is used for ordering of particles inside the rods. Magnetic features corresponding to the 3-D arrays have been observed by MFM pointing out that all magnetic moments in the rod are oriented along the field direction.  相似文献   

3.
A convective assembly technique at the micron scale analogous to the writing action of a “pipette pen” has been developed for the linear assembly of gold nanoparticle strips with micron scale width and millimeter scale length for surface enhanced Raman scattering (SERS). The arrays with interparticle gaps smaller than 3 nm are hexagonally stacked in the vicinity of the pipette tip. Variable numbers of stacked layers and clean surfaces of the assembled nanoparticles are obtained by optimizing the velocity of the pipette tip. The SERS properties of the assembled nanoparticle arrays rely on their stacking number and surface cleanliness.   相似文献   

4.
Distorted 3D hexagonal (space group R-3m) mesoporous titania thin films with high visible-light transparency are produced by introducing a small amount of 1-butanol into sol-gel coating sols containing P123 as the primary pore template. The mesostructure of the titania thin films identified by grazing incidence small angle x-ray scattering (GISAXS), transmission electron microscopy and scanning electron microscopy has rhombohedral symmetry (space group R-3m) with the [111] direction normal to the substrate. In the absence of butanol at the ratio of P123:titania used, poorly ordered films which may contain 2D or 3D hexagonal domains form, but introducing as little as a 1:10 ratio (by mass) of 1-butanol to P123 (with ethanol as coating solvent) leads to a well-defined 3D hexagonal structure in the resulting films. Simulated GISAXS patterns obtained using the NANODIFT program confirm the assignment of the experimental patterns to this structure. The characterization results indicate that over a 1-butanol:P123 mass ratio of 0.1 to 2, the films are composed of ordered arrays of cage-like cavities, and that in contrast to the hypothesized role of butanol as a swelling agent, the pore size decreases with an increase in the ratio of 1-butanol to P123.  相似文献   

5.
Hierarchical nanoparticle assemblies formed by decorating breath figures   总被引:2,自引:0,他引:2  
The combination of two self-assembly processes on different length scales leads to the formation of hierarchically structured nanoparticle arrays. Here, the formation of spherical cavities, or 'breath figures'-made by the condensation of micrometre-sized water droplets on the surface of a polymer solution-that self-assemble into a well-ordered hexagonal array, is combined with the self-assembly of CdSe nanoparticles at the polymer solution-water droplet interface. Complete evaporation of the solvent and water confines the particle assembly to an array of spherical cavities and allows for ex situ investigation. Fluorescence confocal, transmission electron and scanning electron microscope images show the preferential segregation of the CdSe nanoparticles to the polymer solution-water interface where they form a 5-7-nm-thick layer, thus functionalizing the walls of the holes. This process opens a new route to fabricating highly functionalized ordered microarrays of nanoparticles, potentially useful in sensory, separation membrane or catalytic applications.  相似文献   

6.
B. Pivac  P. Dub?ek  N. Radi? 《Vacuum》2007,82(2):189-192
We present a study on amorphous SiO/SiO2 superlattice using grazing-incidence small-angle X-ray scattering (GISAXS). Such nanostructured material might be of great interest for photovoltaic conversion and optoelectronics. Amorphous SiO/SiO2 superlattices were prepared by magnetron sputtering of thin SiO and SiO2 films (20 layers each) on Si (1 0 0) substrate. Rotation of the Si substrate during evaporation ensures homogeneity of the films over the whole substrate. After the evaporation, the samples were annealed at 1100 °C for 1 h in vacuum. The analysis of the 2-D GISAXS pattern has shown that Si nanocrystals are formed in the remaining SiO2 films in the annealed samples. From the 2-D GISAXS pattern, their shape, size and inter-particle distance are determined.  相似文献   

7.
A simple strategy based on the synergistic modulation of inter‐particle and substrate‐particle interaction is applied for the large‐scale fabrication of two‐dimensional (2D) Au and Ag nanoparticle arrays. The surface charge of the substrate is used to redistribute the double layer electric charges on the particles and to modulate the inter‐particle distance within the 2D nanoparticle arrays on the substrate. The resultant arrays, with a wide range of inter‐particle distances, display tunable plasmonic properties. It can be foreseen that such 2D nanoparticle arrays possess potential applications as multiplexed colorimetric sensors, integrated devices and antennas. Herein, it is demonstrated that these arrays can be employed as wavelength‐selective substrates for multiplexed acquisition of surface‐enhanced Raman scattering (SERS) spectra. This simple one step process provides an attractive and low cost strategy to produce high quality and large area 2D ordered arrays with tunable properties.  相似文献   

8.
Amorphous SiO/SiO2 multilayers were studied using grazing-incidence small-angle X-ray scattering (GISAXS). Such SiO/SiO2 superlattices were prepared by alternately magnetron sputtering of 3 nm thin films of SiO and 3 nm of SiO2 (10 layers each) on Si (100) substrate. Rotation of the Si substrate during evaporation ensures the homogeneity of the films over the whole substrate. After evaporation the samples were annealed at 1050 °C for 2 h in vacuum or in air. The analysis of the 2D GISAXS pattern has shown that Si nanocrystals are formed in the annealed samples. Using a Guinier approximation, the inter-nanocrystal distance (10.5 nm) and radius of gyration (2.3 nm) have been obtained for the samples annealed in vacuum. Samples annealed in air have shown similar peak values which were however, much wider distributed.  相似文献   

9.
Patterned close-packed nanoparticle arrays are fabricated using lithography and self-assembly. Microcontact printing is used to selectively transfer ordered nanoparticle monolayers, which are self-assembled at the air/water interface, onto relief structures, which are defined lithographically. The morphology and position of the nanoparticle arrays are determined by the relief structures, while the internal order of the arrays is achieved through the self-assembly process and is maintained during the transfer.  相似文献   

10.
The rapid assembly of icosohedral virus-like particles (VLPs) into highly ordered (domain size > 600 nm), oriented 2D superlattices directly onto a solid substrate using convective coating is demonstrated. In-situ grazing-incidence small-angle X-ray scattering (GISAXS) is used to follow the self-assembly process in real time to characterize the mechanism of superlattice formation, with the ultimate goal of tailoring film deposition conditions to optimize long-range order. From water, GISAXS data are consistent with a transport-limited assembly process where convective flow directs assembly of VLPs into a lattice oriented with respect to the water drying line. Addition of a nonvolatile solvent (glycerol) modified this assembly pathway, resulting in non-oriented superlattices with improved long-range order. Modification of electrostatic conditions (solution ionic strength, substrate charge) also alters assembly behavior; however, a comparison of in-situ assembly data between VLPs derived from the bacteriophages MS2 and Qβ show that this assembly process is not fully described by a simple Derjaguin-Landau-Verwey-Overbeek model alone.  相似文献   

11.
《Materials Letters》2005,59(2-3):276-279
A low cost and simple route was presented to fabricate large-scale ordered nanoparticle arrays by partial dissolution of ordered pore films (or monolayer inverse opal) in a solution. By this method, we have fabricated Fe2O3 and In2O3 hexagonal close-packed nanoparticle arrays. This method is also applicable for synthesis of other material nanoparticle arrays. The particle size in the arrays can be controlled by the dissolution time, which is, additionally, beneficial to study size dependent optical, magnetic, electrochemical, thermodynamic, catalytic properties of nanoparticls.  相似文献   

12.
Highly ordered arrays of nanoparticles exhibit many properties that are not found in their disordered counterparts. However, these nanoparticle superlattices usually form in a far-from-equilibrium dewetting process, which precludes the use of conventional patterning methods owing to a lack of control over the local dewetting dynamics. Here, we report a simple yet efficient approach for patterning such superlattices that involves moulding microdroplets containing the nanoparticles and spatially regulating their dewetting process. This approach can provide rational control over the local nucleation and growth of the nanoparticle superlattices. Using DNA-capped gold nanoparticles as a model system, we have patterned nanoparticle superlattices over large areas into a number of versatile structures with high degrees of internal order, including single-particle-width corrals, single-particle-thickness microdiscs and submicrometre-sized 'supra-crystals'. Remarkably, these features could be addressed by micropatterned electrode arrays, suggesting potential applications in bottom-up nanodevices.  相似文献   

13.
We report a simple, rapid and cost-effective method based on evaporation induced assembly to grow 3D binary colloidal assemblies on a hydrophobic/hydrophilic substrate by simple drop casting. The evaporation of a mixed colloidal drop results in ring-like or uniform area deposition depending on the concentration of particles, and thus assembly occurs at the periphery of a ring or uniformly all over the drop area. Binary colloidal assemblies of different crystal structure are successfully prepared over a wide range of size ratios (γ = small/large) from 0.06 to 0.30 by tuning the γ of the micro- and nanoparticles used during assembly. The growth mechanism of 3D binary colloidal assemblies is investigated and it is found that electrostatic forces facilitate assembly formation until the end of the evaporation process, with capillary forces also playing a role. In addition, the effects of solvent type, humidity, and salt concentration on crystal formation and ordering behaviour are also examined. Furthermore, long range, highly ordered binary colloidal assemblies can be fabricated by the choice of a low conducting solvent combined with evaporation induced assembly.  相似文献   

14.
《Thin solid films》2006,515(2):756-758
We present a study on amorphous SiO/SiO2 superlattice using grazing incidence small-angle X-ray scattering (GISAXS). Amorphous SiO/SiO2 superlattices were prepared by high vacuum evaporation of 3 nm thin films of SiO and SiO2 (10 layers each) on Si(100) substrate. After the evaporation, samples were annealed at 1100 °C for 1 h in vacuum, yielding Si nanocrystals formation. Using a Guinier approximation, the shape and the size of the crystals were obtained.  相似文献   

15.
Lee H  You S  Pikhitsa PV  Kim J  Kwon S  Woo CG  Choi M 《Nano letters》2011,11(1):119-124
The capability of assembling nanoparticles into a desired ordered pattern is a key to realize novel devices which are based not only on the unique properties of nanoparticles but also on the arrangements of nanoparticles. While two-dimensional arrays of nanoparticles have been successfully demonstrated by various techniques, a controlled way of building ordered arrays of three-dimensional (3D) nanoparticle structures remains challenging. We report that a variety of 3D nanoparticle structures can be formed in a controlled way based on the ion-induced focusing, electrical scaffold, and antenna effects from charged aerosols. Particle trajectory calculations successfully predict the whole process of 3D assembly. New surface enhanced Raman scattering substrates based on our 3D assembly were constructed as an example showing the viability of the present approach. This report extends the current capability of positioning nanoparticles on surface to another spatial dimension, which can serve as the foundation of future optical, magnetic, and electronic devices taking the advantage of multidimensions.  相似文献   

16.
In the present study, a novel method involving nitrogen plasma annealing has been reported for preparing InN nanoparticle/nanorod structures and for improving the properties of InN nanoparticle layers. Plasma annealed structures have been characterized by X-ray diffraction, atomic force microscopy and photoluminescence spectroscopy techniques. InN nanoparticle layers have been prepared using activated reactive evaporation set up. It has been observed that there is a remarkable improvement in the conductivity and crystallinity of InN nanoparticle layers on annealing in nitrogen plasma. This has been attributed to the increase in the nitrogen content of the samples. Experiments involving plasma annealing of In nanorods deposited oxide template has also been carried out. It was found that on plasma treatment In nanorods get converted to mixed phase InN nanorods with hexagonal and cubic fractions.  相似文献   

17.
We fabricate arrays of metallic nanoparticle dimers with nanometer separation using electron beam lithography and angle evaporation. These "nanogap" dimers are fabricated on thin silicon nitride membranes to enable high resolution transmission electron microscope imaging of the specific nanoparticle geometries. Plasmonic resonances of the pairs are characterized by dark-field scattering micro-spectroscopy, which enables the optical scattering from individual nano- structures to be measured by using a spatially-filtered light source to illuminate a small area. Scattering spectra from individual dimers are correlated with transmis- sion electron microscope images and finite-difference time-domain simulations of their electromagnetic response, with excellent agreement between simulation and experiment. We observe a strong polarization dependence with two dominant scattering peaks in spectra taken with the polarization aligned along the dimer axis. This response arises from a unique Fano interference, in which the bright hybridized modes of an asymmetric dimer are able to couple to the dark higher- order hybridized modes through substrate-mediated coupling. The presence of this interference is strongly dependent on the nanoparticle geometry that defines the plasmon energy profile but also on the intense localization of charge at the dielectric surface in the nanogap region for separations smaller than 6 nm.  相似文献   

18.
A facile and efficient ultrasonic-template method has been developed for the fabrication of CdS hollow nanoparticle chains. The structures and morphologies of products were characterized by XRD and TEM. UV-Vis and photoluminescence (PL) spectra recorded the optical properties of CdS hollow nanoparticle chains, which showed obvious blue shift relative to the CdS bulk materials. Systematic studies found that the ultrasonic irradiation, concentration of template (polyacrylicamide) and injection method of reaction solution in the system were important factors on the controlled synthesis of hollow nanoparticle chains. The possible mechanism for the formation of CdS hollow nanoparticle chains was also discussed.  相似文献   

19.
Realization of thermally and chemically durable, ordered gold nanostructures using bottom-up self-assembly techniques are essential for applications in a wide range of areas including catalysis, energy generation, and sensing. Herein, we describe a modular process for realizing uniform arrays of gold nanoparticles, with interparticle spacings of 2?nm and above, by using RF plasma etching to remove ligands from self-assembled arrays of ligand-coated gold nanoparticles. Both nanoscale imaging and macroscale spectroscopic characterization techniques were used to determine the optimal conditions for plasma etching, namely RF power, operating pressure, duration of treatment, and type of gas. We then studied the effect of nanoparticle size, interparticle spacing, and type of substrate on the thermal durability of plasma-treated and untreated nanoparticle arrays. Plasma-treated arrays showed enhanced chemical and thermal durability, on account of the removal of ligands. To illustrate the application potential of the developed process, robust SERS (surface-enhanced Raman scattering) substrates were formed using plasma-treated arrays of silver-coated gold nanoparticles that had a silicon wafer or photopaper as the underlying support. The measured value of the average SERS enhancement factor (2?×?10(5)) was quantitatively reproducible on both silicon and paper substrates. The silicon substrates gave quantitatively reproducible results even after thermal annealing. The paper-based SERS substrate was also used to swab and detect probe molecules deposited on a solid surface.  相似文献   

20.
Buried two-dimensional arrays of InP dots were used as a template for the lateral ordering of self-assembled quantum dots. The template strain field can laterally organize compressive (InAs) as well as tensile (GaP) self-assembled nanostructures in a highly ordered square lattice. High-resolution transmission electron microscopy measurements show that the InAs dots are vertically correlated to the InP template, while the GaP dots are vertically anti-correlated, nucleating in the position between two buried InP dots. Finite InP dot size effects are observed to originate InAs clustering but do not affect GaP dot nucleation. The possibility of bilayer formation with different vertical correlations suggests a new path for obtaining three-dimensional pseudocrystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号