首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Xu G  Chance MR 《Analytical chemistry》2004,76(5):1213-1221
Hydroxyl radical-mediated footprinting coupled with mass spectroscopic analysis is a new technique for mapping protein surfaces, identifying structural changes modulated by protein-ligand binding, and mapping protein-ligand interfaces in solution. In this study, we examine the radiolytic oxidation of aspartic and glutamic acid residues to probe their potential use as structural probes in footprinting experiments. Model peptides containing Asp or Glu were irradiated using white light from a synchrotron X-ray source or a cesium-137 gamma-ray source. The radiolysis products were characterized by electrospray mass spectrometry including tandem mass spectrometry. Both Asp and Glu are susceptible to radiolytic oxidization by gamma-rays or synchrotron X-rays. Radiolysis results primarily in the oxidative decarboxylation of the side chain carboxyl group and formation of an aldehyde group at the carbon next to the original carboxyl group, giving rise to a characteristic product with a -30 Da mass change. A similar oxidative decarboxylation also takes place for amino acids with C-terminal carboxyl groups. The methylene groups in the Asp and Glu side chains also undergo oxygen addition forming ketone or alcohol groups with mass changes of +14 and +16 Da, respectively. Characterizing the oxidation reactions of these two acidic residues extends the number of useful side chain probes for hydroxyl radical-mediated protein footprinting from 10 (Cys, Met, Trp, Tyr, Phe, Arg, Leu, Pro, His, Lys) to 12 amino acid residues, thus enhancing our ability to map protein surface structure and in combination with previously identified basic amino acid probes can be used to examine molecular details of protein-protein interactions that are driven by electrostatics.  相似文献   

2.
Radiolysis of peptide and protein solutions with high-energy X-ray beams induces stable, covalent modifications of amino acid residues that are useful for synchrotron protein footprinting. A series of 5-14 amino acid residue peptides of varied sequences were selected to study their synchrotron radiolysis chemistry. Radiolyzed peptide products were detected within 10 ms of exposure to a white light synchrotron X-ray beam. Mass spectrometry techniques were used to characterize radiolytic modification to amino acids cysteine (Cys), methionine (Met), phenylalanine (Phe), tyrosine (Tyr), tryptophan (Trp), proline (Pro), histidine (His), and leucine (Leu). A reactivity order of Cys, Met > Phe, Tyr, > Trp > Pro > His, Leu was determined under aerobic reaction conditions from MS/MS analysis of the radiolyzed peptide products. Radiolysis of peptides in 18O-labeled water under aerobic conditions revealed that oxygenated radical species from air and water both contribute to the modification of amino acid side chains. Cysteine and methionine side chains reacted with hydroxyl radicals generated from radiolysis of water as well as molecular oxygen. Phenylalanine and tyrosine residues were modified predominantly by hydroxyl radicals, and the source of modification of proline was exclusively through molecular oxygen.  相似文献   

3.
Xu G  Chance MR 《Analytical chemistry》2005,77(8):2437-2449
Protein footprinting based on hydroxyl radical-mediated modification and quantitative mass spectroscopic analysis is a proven technique for examining protein structure, protein-ligand interactions, and structural allostery upon protein complex formation. The reactive and solvent-accessible amino acid side chains function as structural probes; however, correct structural analysis depends on the identification and quantification of all the relevant oxidative modifications within the protein sequence. Sulfur-containing amino acids are oxidized readily and the mechanisms of oxidation are particularly complex, although they have been extensively investigated by EPR and other spectroscopic methods. Here we have undertaken a detailed mass spectrometry study (using electrospray ionization mass spectrometry and tandem mass spectrometry) of model peptides containing cysteine (Cys-SH), cystine (disulfide bonded Cys), and methionine after oxidation using gamma-rays or synchrotron X-rays and have compared these results to those expected from oxidation mechanisms proposed in the literature. Radiolysis of cysteine leads to cysteine sulfonic acid (+48 Da mass shift) and cystine as the major products; other minor products including cysteine sulfinic acid (+32 Da mass shift) and serine (-16 Da mass shift) are observed. Radiolysis of cystine results in the oxidative opening of the disulfide bond and generation of cysteine sulfonic acid and sulfinic acid; however, the rate of oxidation is significantly less than that for cysteine. Radiolysis of methionine gives rise primarily to methionine sulfoxide (+16 Da mass shift); this can be further oxidized to methionine sulfone (+32 Da mass shift) or another product with a -32 Da mass shift likely due to aldehyde formation at the gamma-carbon. Due to the high reactivity of sulfur-containing amino acids, the extent of oxidation is easily influenced by secondary oxidation events or the presence of redox reagents used in standard proteolytic digestions; when these are accounted for, a reactivity order of cysteine > methionine approximately tryptophan > cystine is observed.  相似文献   

4.
Xu G  Kiselar J  He Q  Chance MR 《Analytical chemistry》2005,77(10):3029-3037
Hydroxyl radical-mediated footprinting permits detailed examination of structure and dynamic processes of proteins and large biological assemblies, as changes in the rate of reaction of radicals with target peptides are governed by changes in the solvent accessibility of the side-chain probe residues. The precise and accurate determination of peptide reaction rates is essential to successfully probing protein structure using footprinting. In this study, we specifically examine the magnitude and mechanisms of secondary oxidation occurring after radiolytic exposure and prior to mass spectrometric analysis. Secondary oxidation results from hydrogen peroxide and other oxidative species generated during radiolysis, significantly impacting the oxidation of Met and Cys but not aromatic or other reactive residues. Secondary oxidation of Met with formation of sulfoxide degrades data reproducibility and inflates the perceived solvent accessibility of Met-containing peptides. It can be suppressed by adding trace amounts of catalase or millimolar Met-NH2 (or Met-OH) buffer immediately after irradiation; this leads to greatly improved adherence to first-order kinetics and more precise observed oxidation rates. The strategy is shown to suppress secondary oxidation in model peptides and improve data quality in examining the reactivity of peptides within the Arp2/3 protein complex. Cysteine is also subject to secondary oxidation generating disulfide as the principal product. The disulfides can be reduced before mass spectrometric analysis by reducing agents such as TCEP, while methionine sulfoxide is refractory to reduction by this reagent under typical reducing conditions.  相似文献   

5.
Xu G  Chance MR 《Analytical chemistry》2005,77(14):4549-4555
Hydroxyl radical-mediated protein footprinting is a convenient and sensitive technique for mapping solvent-accessible surfaces of proteins and examining the structure and dynamics of biological assemblies. In this study, the reactivities and tendencies to form easily detectable products for all 20 (common) amino acid side chains along with cystine are directly compared using various standards. Although we have previously reported on the oxidation of many of these residues, this study includes a detailed examination of the less reactive residues and better defines their usefulness in hydroxyl radical-mediated footprinting experiments. All 20 amino amides along with cystine and a few tripeptides were irradiated by gamma-rays, the products were analyzed by electrospray mass spectrometry, and rate constants of modification were measured. The reactivities of amino acid side chains were compared based on their loss of mass spectral signal normalized to the rate of loss for Phe or Pro that were radiolyzed simultaneously to serve as internal standards. In this way, accurate quantitation of relative rates could be assured. A reactivity order of amino acid side chains was obtained as Cys > Met > Trp > Tyr > Phe > cystine > His > Leu, Ile > Arg, Lys, Val > Ser, Thr, Pro > Gln, Glu > Asp, Asn > Ala > Gly. Ala and Gly are far too unreactive to be useful probes in typical experiments and Asp and Asn are unlikely to be useful as well. Although Ser and Thr are more reactive than Pro, which is known to be a useful probe, their oxidation products are not easily detectable. Thus, it appears that 14 of the 20 side chains (plus cystine) are most likely to be useful in typical experiments. Since these residues comprise approximately 65% of the sequence of a typical protein, the footprinting approach provides excellent coverage of the side-chain reactivity for proteins.  相似文献   

6.
Protein surfaces are important in most biological processes, including protein-protein interactions, enzymatic catalysis, and protein-ligand binding. We report a method in which hydroxyl radicals generated by a rapid-UV irradiation of a 15% hydrogen peroxide solution were utilized to oxidize specific amino acid side chains of two model proteins (lysozyme, beta-lactoglobulin A), according to the residues' chemical reactivities and the solvent accessibility of the reactive carbons and sulfurs in the residue. Oxidized peptides generated by tryptic digestion were identified by electrospray-Fourier transform mass spectrometry. The specific sites of the stable modification were then identified by reverse-phase liquid chromatography coupled to quadropole ion trap tandem mass spectrometry. The solvent accessibility of the residue was shown to directly affect the rate of oxidation by this method (with the exception of methionine), supporting its use as a rapid measure of the solvent accessibility of specific residues, and in some cases, individual atoms.  相似文献   

7.
Fast photochemical oxidation of proteins for epitope mapping   总被引:1,自引:0,他引:1  
The growing use of monoclonal antibodies as therapeutics underscores the importance of epitope mapping as an essential step in characterizing antibody-antigen complexes. The use of protein footprinting coupled with mass spectrometry, which is emerging as a tool in structural biology, offers opportunities to map antibody-binding regions of antigens. We report here the use of footprinting via fast photochemical oxidation of proteins (FPOP) with OH radicals to characterize the epitope of the serine protease thrombin. The data correlate well with previously published results that determined the epitope of thrombin. This study marks the first time oxidative labeling has been used for epitope mapping.  相似文献   

8.
Exposure of aqueous protein solutions to gamma-rays results in the formation of *OH radicals that readily react with solvent-exposed amino acid side chains. The incorporation of oxygen leads to peak progressions with a spacing of 16 Da in the mass distribution of the polypeptide chain. Unlike some other oxidative labeling strategies, these radiolysis experiments do not require solution additives that could interfere with the analysis or that might cause secondary oxidation processes. Using myoglobin as a model system, we demonstrate that the level of oxidative labeling depends critically on the protein concentration. If ignored, this effect may lead to ambiguities in the interpretation of experiments employing *OH labeling for monitoring solvent-accessible surface areas, protein folding, and protein-protein interactions. We present a simple analysis that allows oxidation to be interpreted as a process with exponential kinetics, characterized by an apparent rate constant of the form kapp=kRAD/([P]tot+B), where kRAD is the primary rate of hydroxyl radical production, B is a constant, and [P]tot is the total protein concentration. While oxidative labeling may trigger some changes in protein conformation, it is found that the magnitude of this effect is surprisingly small, a result that is consistent with observations previously made by others.  相似文献   

9.
Jung SY  Li Y  Wang Y  Chen Y  Zhao Y  Qin J 《Analytical chemistry》2008,80(5):1721-1729
Identification of protein methylation sites typically starts with database searching of MS/MS spectra of proteolytic digest of the target protein by allowing addition of 14 and 28 Da in the selected amino acid residues that can be methylated. Despite the progress in our understanding of lysine and arginine methylation, substrates and functions of protein methylation at other amino acid residues remain unknown. Here we report the analysis of protein methylation for p53, SMC3, iNOS, and MeCP2. We found that a large number of peptides can be modified on the lysine, arginine, histidine, and glutamic acid residues with a mass increase of 14 or 28 Da, consistent with methylation. Surprisingly, a majority of which did not demonstrate a corresponding mass shift when cells were cultured with isotope-labeled methionine, a precursor for the synthesis of S-adenosyl-l-methionine (SAM), which is the most commonly used methyl donor for protein methylation. These results suggest the possibility of either exogenous protein methylation during sample handling and processing for mass spectrometry or the existence of SAM-independent pathways for protein methylation. Our study found a high occurrence of protein methylation from SDS-PAGE isolated endogenous proteins and identified complications for assigning such modifications as in vivo methylation. This study provides a cautionary note for solely relying on mass shift for mass spectrometric identification of protein methylation and highlights the importance of in vivo isotope labeling as a necessary validation method.  相似文献   

10.
The primary utility of trypsin digestion in proteomics is that it cleaves proteins at predictable locations, but it is also notable for yielding peptides that terminate in basic arginine and lysine residues. Tryptic peptides fragment in ion trap tandem mass spectrometry to produce prominent C-terminal y series ions. Alternative proteolytic digests may produce peptides that do not follow these rules. In this study, we examine 2568 peptides generated through proteinase K digestion, a technique that produces a greater diversity of basic residue content in peptides. We show that the position of basic residues within peptides influences the peak intensities of b and y series ions; a basic residue near the N-terminus of a peptide can lead to prominent b series peaks rather than the intense y series peaks associated with tryptic peptides. The effects of presence and position for arginine, lysine, and histidine are explored separately and in combination. Arg shows the most dominant effects followed by His and then by Lys. Fragment ions containing basic residues produce more intense peaks than those without basic residues. Doubly charged precursor ions have generally been modeled as producing only singly charged fragment ions, but fragment ions that contain two basic residues may accept both protons during fragmentation. By characterizing the influence of basic residues on gas-phase fragmentation of peptides, this research makes possible more accurate fragmentation models for peptide identification algorithms.  相似文献   

11.
Many drugs and chemicals exert their biological effect by modulating protein-protein interactions. In vitro approaches to characterize these mechanisms are often based on indirect measurements (e.g., fluorescence). Here, we used mass spectrometry (MS) to directly monitor the effect of small-molecule ligands on the binding of a coactivator peptide (SRC1) by the human estrogen receptor alpha ligand binding domain (hERalpha LBD). Nanoelectrospray mass spectrometry (nanoESI-MS) and high-mass matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) combined with chemical cross-linking were employed to follow these processes. The chemical cross-linking protocol used prior to high-mass MALDI analysis allows detection of intact noncovalent complexes. The binding of intact hERalpha LBD homodimer with two coactivator peptides was detected with nanoESI-MS and high-mass MALDI-MS only in the presence of an agonist ligand. Furthermore, high-mass MALDI-MS revealed an increase of the homodimer abundance after incubating the receptor with a ligand, independent of the ligand character (i.e., agonist, antagonist). The binding characteristics of the compounds tested by MS correlate very well with their biological activity reported by cell-based assays. High-mass MALDI appears to be an efficient and simple tool for directly monitoring ligand regulation mechanisms involved in protein-protein interactions. Furthermore, the combination of both MS methods allows identifying and characterizing endocrine-disrupting compounds or new drug compounds in an efficient way.  相似文献   

12.
Electrospray ionization-mass spectrometry is becoming widely used as a high-throughput method for the study of biomolecular interactions. It allows for the analysis of complexes from heterogeneous mixtures with high sensitivity and selectivity. In many cases, biomolecules and their complexes must be stored in nonvolatile salt buffers and other solubilizing agents, such as organics or detergents, to maintain stability and integrity. To ensure an efficient electrospray process, desalting and exchanging the biomolecular solutions into a volatile buffer is imperative. Current off-line or on-line methods to accomplish this are time-consuming, frequently disrupt noncovalent interactions, and can result in considerable sample loss. Here we describe a simple, general, and highly efficient, rapid in-line desalting approach using a small gel cartridge to assist in the mass spectrometric analysis of biomolecules and their complexes. Though the method has broad applicability, we focus our analysis on proteins and demonstrate its usefulness by examining protein-metal, protein-protein, protein-DNA, and protein-RNA interactions. The method is shown to provide rapid direct analysis of analyte solutions containing salts, glycerol, organics, and involatile buffers without deleterious effects.  相似文献   

13.
Aye TT  Low TY  Sze SK 《Analytical chemistry》2005,77(18):5814-5822
We have developed an ultrafast pulse method for protein surface footprinting by laser-induced protein surface oxidations. This method makes use of a pulse UV laser that produces, in nanoseconds, a high concentration of hydroxyl (OH) free radicals by photodissociation of a hydrogen peroxide (H2O2) solution. The OH radicals oxidize amino acid residues located on the protein surface to produce stable covalent modifications. The oxidized protein is then analyzed by mass spectrometry to map the oxidized amino acid residues. Ubiquitin and apomyoglobin were used as model proteins in this study. Our results show that a single laser pulse can produce extensive protein surface oxidations. We found that monooxidized ubiquitins were more susceptible to further oxidations by subsequent laser irradiation, as compared to nonoxidized ones. This is due to the conformational changes of proteins by oxidation that increases the solvent-accessible surface area. Therefore, it is crucial to perform this experiment with a single pulse of laser so as to avoid oxidation of proteins after conformation of the protein changes. Subsequently, to obtain a high frequency and coverage of the oxidation sites while keeping the number of laser shots to one, we further optimized the laser power and concentration of hydrogen peroxide as well as the concentration of protein. This ultrafast OH radical generation method allows for rapid and accurate detection of surface residues, enabling mapping of the solvent-accessible regions of a protein in its native state.  相似文献   

14.
Exposure of proteins to hydroxyl radicals induces the incorporation of oxygen atoms into solvent-exposed side chains. Earlier studies have employed this approach for mapping protein-protein interactions in mass spectrometry-based footprinting experiments. This work explores whether the overall level of gamma-ray mediated oxidative labeling can be used for monitoring large-scale conformational changes. According to a recently developed kinetic model (Tong, X.; Wren, J. C.; Konermann, L. Anal. Chem. 2007, 79, 6376-6382), the apparent first-order rate constant for oxidative labeling can be approximated as k(app) = k(RAD)/([P](tot) + C/k(u)), where k(RAD) is the primary rate of *OH formation, [P](tot) is the protein concentration, C reflects the presence of competing radical deactivation channels, and ku is the rate constant at which hydroxyl radicals react with the protein. The current study introduces conformational effects into this model by proposing that k(u) = [see text for formula] , where N is the number of amino acids, alphai is a measure for the solvent exposure of residue i, and k(ch)(i) is the oxidation rate constant that would apply for a completely solvent-exposed side chain. Using myoglobin and cytochrome c as model systems, it is demonstrated that unfolding by addition of H(3)PO(4) increases k(app) by up to 30% and 70%, respectively. Unfolding by other commonly used denaturants such as organic acids or urea results in dramatically lower oxidation levels than for the native state, a behavior that is due to the radical scavenging activity of these substances (corresponding to an increased value of C). Control experiments on model peptides are suitable for identifying such "secondary" effects, i.e., factors that modify oxidation levels without being related to conformational changes. In conclusion, the overall *OH labeling level represents a viable probe of large-scale protein conformational changes only under conditions where secondary effects are known to be minimal and where [P](tot) is constant.  相似文献   

15.
Sechi S  Chait BT 《Analytical chemistry》2000,72(14):3374-3378
Accurate definition of the carboxyl terminal of proteins is necessary for elucidating posttranslational processing at the C-terminal and more generally for characterizing protein primary structures. Here, we describe a strategy for isolating and characterizing the C-terminal peptide of a protein after proteolysis with endoprotease Lys-C. Isolation is achieved using anhydrotrypsin, a catalytically inert derivative of trypsin that binds peptides containing lysine or arginine residues at their C-termini without cleaving them. Rapid, accurate characterization of the isolated C-terminal peptide is achieved by mass spectrometry. Initial identification of the C-terminal peptide is obtained by comparing matrix-assisted laser desorption/ionization time-of-flight mass spectra of the digest prior to and after incubation with anhydrotrypsin. Characterization of the C-terminal sequence is achieved by capillary-HPLC electrospray ionization tandem mass spectrometry of the isolated peptide using a quadrupole ion trap mass spectrometer in the selective reaction monitoring mode. This strategy was successfully applied to the characterization of the C-terminal of proteins with molecular masses ranging up to 56 kDa.  相似文献   

16.
The efficiency of growth of nanocrystalline tin oxide-germania nanocomposites at room temperature was investigated in the presence of the amino acids arginine, histidine, and lysine under varying conditions. The preparation of tin oxide nanoparticles under similar conditions was also examined. It was observed that of the three amino acids, arginine was the most efficient and formed higher yields of the products. Calcination of the products led to crystalline materials. The growth was carried out using a biological approach under mild conditions at room temperature. The morphology and the crystallinity of the products were examined by transmission electron microscopy and atomic force microscopy. The optical properties of the nanocomposites were characterized by fluorescence, and ultraviolet-visible spectroscopy. The nitrogen adsorption studies indicate that the nanocomposites obtained were mesoporous in nature. The nanocomposites exhibited high BET surface area. Such materials could be potentially useful for the development of improved gas sensor devices and optical devices.  相似文献   

17.
Controlled microwave irradiation has been used to accelerate metal-catalyzed oxidation (MCO) reactions that site-specifically oxidize the amino acids bound to Cu in a metalloprotein. When combined with mass spectrometry, these MCO reactions provide a sensitive method for determining Cu-protein binding sites. In this work, we demonstrate that microwave irradiation can increase the rate of these site-specific oxidation reactions for Cu/Zn superoxide dismutase by at least 15-fold. By choosing the appropriate microwave power, changes to the protein's structure can be avoided while still accelerating the oxidation reactions. The maximum microwave power suitable for maintaining the protein's structural integrity can be readily determined by measuring the oxidation extent of different peptide fragments as a function of microwave power. Such determinations require several measurements and thus limit the overall throughput of this approach; however, these microwave-assisted reactions do provide good time resolution for studying dynamic changes to Cu-binding sites.  相似文献   

18.
Mass spectrometry (MS) is emerging as an additional tool for examining protein structure by way of experiments where structurally related mass changes induced in solution are subsequently detected in the gas phase. Selective noncovalent adduct protein probing (SNAPP) is a recent addition to this type of experiment. SNAPP utilizes noncovalent recognition of lysine residues with 18-crown-6 (18C6) to monitor changes in protein structure. It has been observed that the number of 18C6 adducts that attach to a protein is a function of the structure of the protein. The present work seeks to examine the underlying chemistry which controls the differential attachment of 18C6 to lysine by using ubiquitin as a model system. Ubiquitin is a small protein with a structure that has been well characterized by multiple techniques. Site-directed mutagenesis was used to create a series of ubiquitin mutants where the lysine residues were exchanged for asparagine one at a time. These mutants were then evaluated by SNAPP-MS to determine the relative contribution of each lysine as a binding site for 18C6. It was found that attachment of 18C6 is largely controlled by the strength of intramolecular interactions involving lysine residues. Salt bridges provide the greatest interference, followed by hydrogen bonds. In addition to determining the mechanism for SNAPP, insights are provided about the structure of ubiquitin including confirmation of the existence of two dynamic states for the native structure. These results are discussed in relation to the biological functions of ubiquitin.  相似文献   

19.
An improved method for peptide de novo sequencing by MALDI mass spectrometry is presented. The method couples a charge derivatization reaction with C-terminal digestion to modify tryptic peptides. The charge derivatization attaches a fixed charge group onto the N-termini of peptides, and the enzymatic digestion after the derivatization step removes C-terminal basic amino acid residues such as arginine and lysine. The fragmentation of the modified peptide(s) under low-energy CID conditions (MALDI Q-TOF mass spectrometer) yields a simplified yet complete ion series of the peptide sequence. The validity of the method is demonstrated by the results from several model protein digests, where peptide sequences were correctly deduced either manually or through an automated sequencing program.  相似文献   

20.
During purification process development and analytical characterization, a recombinant human monoclonal antibody, referred to as rmAb1, showed an anomalous charge heterogeneity profile by cation-exchange chromatography (CIEC), characterized by extremely high retention and poor resolution between charge variants. Mass spectrometry-based footprinting methodologies that include selective labeling of lysine with sulfosuccinimidyl acetate and arginie with p-hydroxyphenylglyoxal were developed to map the positive charges on the rmAb1 surface. On the basis of the average percentages of labeling obtained for the lysine and arginine residues by peptide mapping analysis, the positive charges were more distributed on the surface in the Fab region than in the Fc region of rmAb1. By a comparative study of in-solution and on-resin labeling reaction dynamics, seven positively charged residues were identified to bind to the cation-exchange resin and they were located in the variable domains. Among them, three lysine and one arginine residues appeared to cluster together on the surface to form a positive charge patch. When the charge patch residues were neutralized by chemical labeling, rmAb1 exhibited a more typical CIEC retention time, confirming that the charge patch was responsible for the atypical CIEC profile of rmAb1. To our knowledge, this work is the first report revealing the amino acid composition of a surface charge patch on therapeutic monoclonal antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号