首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Fatigue life calculation of notched components based on the elastic‐plastic fatigue fracture mechanics The life of notched components is subdivided into the pre‐crack, or crack‐initiation, and crack propagation phases within and outside notch area. It is known that a major factor governing the service life of notched components under cyclic loading is fatigue crack growth in notches. Therefore a uniform elastic‐plastic crack growth model, based on the J‐Integral, was developed which especially considers the crack opening and closure behaviour and the effect of residual stresses for the determination of crack initiation and propagation lives for cracks in notches under constant and variable‐amplitude loading. The crack growth model will be introduced and verified by experiments.  相似文献   

2.
Considerable progress has been achieved in fractal characterization of the properties of crack surfaces in quasibrittle materials such as concrete, rock, ice, ceramics and composites. Recently, fractality of cracks or microcracks was proposed as the explanation of the observed size effect on the nominal strength of structures. This explanation, though, has rested merely on intuitive analogy and geometric reasoning, and did not take into account the mechanics of crack propagation. In this paper, the energy-based asymptotic analysis of scaling presented in the preceding companion paper in this issue [1] is extended to the effect of fractality on scaling. First, attention is focused on the propagation of fractal crack curves (invasive fractals). The modifications of the scaling law caused by crack fractality are derived, both for quasibrittle failures after large stable crack growth and for failures at the initiation of a fractal crack in the boundary layer near the surface. Second, attention is focused on discrete fractal distribution of microcracks (lacunar fractals), which is shown to lead to an analogy with Weibull's statistical theory of size effect due to material strength randomness. The predictions ensuing from the fractal hypothesis, either invasive or lacunar, disagree with the experimentally confirmed asymptotic characteristics of the size effect in quasibrittle structures. It is also pointed out that considering the crack curve as a self-similar fractal conflicts with kinematics. This can be remedied by considering the crack to be an affine fractal. It is concluded that the fractal characteristics of either the fracture surface or the microcracking at the fracture front cannot have a significant influence on the law of scaling of failure loads, although they can affect the fracture characteristics. Walter P. Murphy, Professor| of This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Fatigue life predictions for notched members are made using local strain and elastic-plastic fracture mechanics concepts. Crack growth from notches is characterized by J-integral estimates made for short and long cracks. The local notch strain field is determined by notch geometry, applied stress level and material properties. Crack initiation is defined as a crack of the same size as the local notch strain field. Crack initiation life is obtained from smooth specimens as the life to initiate a crack equal to the size of cracks in the notched member. Notch plasticity effects are included in analyzing the crack propagation phase. Crack propagation life is determined by integrating the equation that relates crack growth rate to ΔJ from the initiated to final crack size. Total fatigue life estimates are made by combining crack initiation and crack propagation phases. These agree within a factor of 1.5 with measured lives for the two notch geometries.  相似文献   

4.
Brittle fracture initiation under increasing load occurs from a blunting crack. The present paper proposes as a criterion for the transition from blunting to fast crack growth that the available elastic energy divided by a volume which depends on the fracture mechanism and the crack tip opening displacement reaches a critical value. This criterion is shown to be applicable for initiation from initially sharp cracks, initially rounded notches and from ductile growing cracks. The model allows a quantitative discussion on the size, temperature and notch root radius requirements for fracture mechanics testing.  相似文献   

5.
Notch-like stress raisers occur widely in engineering components. They are preferred sites for crack initiation when the components are subjected to cyclic loadings. Thus the growth of cracks initiated from notches is very relevant to design against fatigue failures. Schematic models proposed to explain the departure of notch crack growth from linear elastic fracture mechanics predictions are briefly reviewed. Different methods of measuring crack closure are compared. It is found that the commonly employed notch-mouth clip-gauge method is not sensitive enough to detect the closure of short cracks in regions of notch plasticity. Various mechanics parameters have been claimed to be able to bring the notch crack and long crack growth rate data to a single base. In the present work on double-edge notched AISI 316 stainless steel specimens, it is found that none of them is able to correlate satisfactory all the experimental data.  相似文献   

6.
Fracture and fatigue tests have been performed on micro‐sized specimens for microelectromechanical systems (MEMS) or micro system technology (MST) applications. Cantilever beam type specimens with dimensions of 10 × 12 × 50 μm3, approximately 1/1000th the size of ordinary‐sized specimens, were prepared from a Ni–P amorphous thin film by focused ion beam machining. Fatigue crack growth and fracture toughness tests were carried out in air at room temperature, using a mechanical testing machine developed for micro‐sized specimens. In fracture toughness tests, fatigue pre‐cracks were introduced ahead of the notches. Fatigue crack growth resistance curves were obtained from the measurement of striation spacing on the fatigue surface, with closure effects on the fatigue crack growth also being observed for micro‐sized specimens. Once fatigue crack growth occurs, the specimens fail within one thousand cycles. This indicates that the fatigue life of micro‐sized specimens is mainly dominated by a crack initiation process, also suggesting that even a micro‐sized surface flaw may be an initiation site for fatigue cracks which will shorten the fatigue life of micro‐sized specimens. As a result of fracture toughness tests, the values of plane strain fracture toughness, KIC, were not obtained because the criteria of plane strain were not satisfied by this specimen size. As the plane strain requirements are determined by the stress intensity, K, and by the yield stress of the material, it is difficult for micro‐sized specimens to satisfy these requirements. Plane‐stress‐ and plane‐strain‐dominated regions were clearly observed on the fracture surfaces and their sizes were consistent with those estimated by fracture mechanics calculations. This indicates that fracture mechanics is still valid for such micro‐sized specimens. The results obtained in this investigation should be considered when designing actual MEMS/MST devices.  相似文献   

7.
The effect of structure size on the nominal strength of unidirectional fiber-polymer composites, failing by propagation of a kink band with fiber microbuckling, is analyzed experimentally and theoretically. Tests of novel geometrically similar carbon–PEEK specimens, with notches slanted so as to lead to a pure kink band (not accompanied by shear or splitting cracks), are conducted. They confirm the possibility of stable growth of long kind bands before the peak load, and reveal the existence of a strong (deterministic, non-statistical) size effect. The bi-logarithmic plot of the nominal strength (load divided by size and thickness) versus the characteristic size agrees with the approximate size effect law proposed for quasibrittle failures in 1983 by Bažant. The plot exhibits a gradual transition from a horizontal asymptote, representing the case of no size effect (characteristic of plasticity or strength criteria), to an asymptote of slope -1/2 (characteristic of linear elastic fracture mechanics, LEFM). A new derivation of this law by approximate (asymptotically correct) J-integral analysis of the energy release, as well as by the recently proposed nonlocal fracture mechanics, is given. The size effect law is further generalized to notch-free specimens attaining the maximum load after a stable growth of a kink band transmitting a uniform residual stress, and the generalized law is verified by Soutis, Curtis and Fleck's recent compression tests of specimens with holes of different diameters. The nominal strength of specimens failing at the initiation of a kink band from a smooth surface is predicted to also exhibit a (deterministic) size effect if there is a nonzero stress gradient at the surface. A different size effect law is derived for this case by analyzing the stress redistribution. The size effect law for notched specimens permits the fracture energy of the kink band and the length of the fracture process zone at the front of the band to be identified solely from the measurements of maximum loads. The results indicate that the current design practice, which relies on the strength criteria or plasticity and thus inevitably misses the size effect, is acceptable only for small structural parts and, in the interest of safety, should be revised in the case of large structural parts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Fatigue Crack Growth in Notches Nowadays it is wellknown that an important part of the fatigue life time, usually differenciated in crack initiation and crack growth, is often controlled by fatigue crack growth of cracks in notches. An elastic-plastic on the J-integral based crack growth model considering the crack opening and closure phenomenon will be described to determine crack growth of cracks in notches between crack initiation and failure. Experimental results and finite element analysis were used to verify the developed model.  相似文献   

9.
Ductile striation space (DSS), a parameter to predict actual cracks in both direction of length and depth, is proposed for the surface fatigue crack behaviors on notched Waspaloy. Three different lengths (1, 2 and 4 mm) of artificial notches are formed as the initial surface crack for an applied maximum stress of 1,103 MPa at the stress ratio R of 0.05. These notches are similar with the appearance of the surface cracks found from the survey of compressor disk. The results show that, all initial crack sites in the depth direction started from the multiple origination sites. The DSS parameter was clearly confirmed, and it also proves the high effectiveness of the measurement in the range of the stress intensity factors for acquiring the crack growth rate on the fractured surface. The surface cracks on Waspaloy at room temperature in an atmosphere perfectly follow the relation of ΔK versus da/dN and db/dN, even though there are, respectively, earlier and later timing differences on the initiation of cracks for the notch sizes of 1 and 4 mm. The results of ΔK versus da/dN and db/dN relations show a similar slope for three different kinds of notches.  相似文献   

10.
Shear fracture tests of concrete   总被引:10,自引:0,他引:10  
Symmetrically notched beam specimens of concrete and mortar, loaded near the notches by concentrated forces that produce a concentrated shear force zone, are tested to failure. The cracks do not propagate from the notches in the direction normal to the maximum principal stress but in a direction in which shear stresses dominate. Thus, the failure is due essentially to shear fracture (Mode II). The crack propagation direction seems to be governed by maximum energy release rate. Tests of geometrically similar specimens yield maximum loads which agree with the recently established size effect law for blunt fracture, previously verified for tensile fracture (Mode I). This further implies that the energy required for crack growth increases with the crack extension from the notch. The R-curve that describes this increase is determined from the size effect. The size effect also yields the shear fracture energy, which is found to be about 25-times larger than that for Mode I and to agree with the value predicted by the crack band model. The fracture specimen is simple to use but not perfect for shear fracture because the deformation has a symmetric component with a non zero normal stress across the crack plane. Nevertheless, these disturbing effects appear to be unimportant. The results are of interest for certain types of structures subjected to blast, impact, earthquake, and concentrated loads.  相似文献   

11.
This paper uses a local model to predict ductile fracture in geometrically similar structures of different sizes containing either sharp cracks or blunt stress concentrators. Simple theoretical considerations suggest that when fracture occurs by quasi-isotropic void growth, fracture initiation at blunt notches follows replica scaling, whereas fracture initiation at sharp cracks does not. Simulations with a local fracture model of fracture events in (1) fatigue precracked compact specimens and (2) three-point-bend bars containing blunt notches confirm these conclusions. However, a comparison of simulations with actual experimental results with HY-130 steel specimens leads to mixed conclusions. Predicted and observed behaviors for fracture at sharp cracks agree well, but the discrepancy is considerable for fracture initiating at blunt notches loaded in bending. Significant scaling effects are observed in the experiments for the conditions of fracture initiation at blunt notches. Fractographic analysis reveals that the reason for this discrepancy is a difference in the micromechanisms controlling fracture at sharp cracks as opposed to blunt notches. At sharp cracks, quasi-isotropic void growth dominates, whereas fracture initiates at blunt notches by a shear localization process and the nucleation, growth, and coalescence of voids in a mixed shear and tensile deformation field. The transition from one mode to the other may be governed by the hardening rate and, if so, is material dependent. Therefore, when using local fracture models for predicting fracture under generalized geometric and loading conditions, care must be taken, that the micromechanisms of ductile fracture invoked in the actual material match those assumed by the local fracture model. If this correspondence is verified, local fracture models can be used to predict fracture conditions and associated scaling effects for situations not amenable to treatment by classical elasto-plastic fracture mechanics. However, new or expanded models that can treat ductile fracture in localized shear zones should be developed to realize the full potential of these local fracture methodologies. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Generalizations and specializations of cohesive crack models   总被引:1,自引:0,他引:1  
This paper presents an overview of the cohesive crack model, one of the basic models used so far to describe the fracture of concrete and other quasibrittle materials. Recent developments and needs for further research are discussed. The displayed evidence and the discussion are based on considering the cohesive crack model as a constitutive assumption rather than an ad hoc model for the behaviour ahead of a preexisting crack. Topics addressed are fracture of unnotched specimens, mixed mode fracture, diffuse cracking, anomalous stress-strain curves, size effect and asymptotic analysis, and strength of structural elements with notches.  相似文献   

13.
R Sunder 《Sadhana》1995,20(1):247-285
A review is made of efforts at the National Aerospace Laboratories in the development of fatigue crack growth prediction technology for airframe applications. The research was focused on extension of rainflow techniques for crack growth analysis and development of accelerated crack growth calculation methods for spectrum loading. Fatigue crack closure forms a crucial element of modelling and fractographic techniques were developed for its study. These, combined with binary coded event registration enabled crack growth and closure mapping for part-through cracks in metallic materials. Experimental research on short cracks at notches led to discovery of the hysteretic nature of crack closure, which explains well-known history-sensitive local mean stress effects in notch root fatigue. Optical fractography of failures obtained under simulated service conditions revealed that short cracks do not exhibit any more scatter than long cracks at comparable growth rates. The nature of multi-site crack initiation and growth of small cracks at notches was investigated and the effort extended to lug joints that are widely used in airframe applications. Results from this work suggest the possibility of modelling crack growth from a size smaller than 50 microns through to failure, thereby accounting for a major fraction of total life. The work described in this paper enjoyed the strong support of Dr S R Valluri, Prof R Narasimha and Dr K N Raju. Financial support for the effort was provided by Aeronautical Research & Development Board, Aeronautical Development Agency and Department of Science and Technology.  相似文献   

14.
In this paper we introduce a correspondence principle between fractal cracks and notches. This correspondence principle defines an equivalent smooth blunt crack for a fractal crack. Once this transformation is accomplished, the laws of linear elastic fracture mechanics apply. Since the root radius of the equivalent crack is finite, the crack may be further reduced to a notch visualized as an elongated elliptical void. Therefore, the laws of the LEFM and those of Neuber’s ‘notch mechanics’ coincide, and they can be used interchangeably. In other words, we have shown that the three mathematical representations of discontinuities in the displacement field, a notch, a classic Griffith crack and a fractal crack, are related, and the pertinent relationships are determined by the proposed correspondence principle. We also give an estimation of the size of the plastic region ahead of a self-similar (or self-affine) fractal crack tip.  相似文献   

15.
A series of axial tensile fatigue tests (R = 0.1) was carried out to investigate the initiation and the growth behaviours of very small surface fatigue cracks under two different surface conditions (viz. smooth and pitted surfaces) of AISI 304 stainless steel at room temperature. This paper deals with both of the two approaches regarding the analysis of fatigue: the approach based on the concept of fracture mechanics and low cycle fatigue. In particular, both the initiation and growth of cracks and the coalescence of small cracks by fatigue in the specimen have been investigated by the methods of surface replicas and photomicrographs. Quantitative information such as the initiation period, growth and coalescence behaviours of small cracks, and crack growth properties were systematically obtained. The results show that the accurate determination of these parameters is critical for the application of fracture mechanics to fatigue life assessment.  相似文献   

16.
Abstract

The creep life time of a smooth specimen can be predicted using existing laws for creep deformation and steady state creep rate. When crack growth behaviour is involved, it is necessary to construct a law of creep crack growth rate to predict creep fracture life. Creep fracture life can be measured by integrating the law of creep crack growth rate. One example is the creep crack growth rate, represented by the parameter Q*. In this study, we investigated the applicability of this prediction method to creep fracture remnant life for a cracked specimen. The Ω criterion is proposed to predict creep fracture remnant life for a smooth specimen for creep ductile materials. In this study, the correlation between Q*L derived from the paremeters Q* and Ω is investigated. The correlation between QL* and Ω provided a unified theoretical prediction law of creep fracture remnant life for high-temperature creep-ductile materials in the range from smooth to precracked specimens.  相似文献   

17.
Abstract— Fatigue cracking of complex structure often involves several interacting cracks developing in a sequence of crack growth, arrest and reinitiation. A "combined" method of damage tolerance analysis is presented which employs fracture mechanics concepts to calculate crack growth and fatigue data from notched coupons with the appropriate notch radius for the crack initiation phase. The notched coupon data, plotted as peak elastic notch stress vs cycles to crack initiation, are shown to be applicable even when limited yielding occurs at the notch root. For several practical reasons it is recommended to select the initial crack size, a i, for the crack growth phase to be as large as possible, but in accord with two selection criteria. First, a i, must be within a notch-root region wherein the elastic stress distributions near a variety of notches are virtually identical. Secondly, a i must be small enough not to significantly influence the stress distributions for other cracks. The Combined Method is illustrated by means of an example involving fatigue crack growth along a widthwise row of holes in 305 mm wide test panels.  相似文献   

18.
The purpose of the experimental work reported in this contribution was to provide data that may serve for the development of scaling rules for ductile fracture at blunt notches. Bending experiments were performed with three sizes of geometrically scaled notched bend specimens of the ferritic pressure vessel material 20MnMoNi55, material number 1.6310 (heat number 69906) using carefully scaled supports, using geometrically similar U-notched bend bars with rectangular cross-sections and scaled blunt notches covering a scale range of 14. Fracture initiation was reliably detected by means of the dc potential drop technique. Comparison of the normalised load versus load-point-displacement curves revealed a significant size effect for the conditions of fracture initiation, with large specimens fracturing at smaller normalised displacements than smaller ones. The energy up to the initiation point normalised to the ligament can be linearly correlated with specimen size, while the energy normalised to the active volume (ligament size multiplied by notch width) consists of two terms: a hyperbolic decay term analogous to the initiation of crack extension in fracture mechanics and a constant term corresponding to the classical size independent plasticity theory. For the smallest specimens investigated the first term amounts to about 28% of the total volume specific work, for the largest specimens there is almost no contribution of the first term.  相似文献   

19.
Prediction of non propagating cracks   总被引:1,自引:0,他引:1  
An explanation for non propagating fatigue cracks is presented based on the criterion that once the value of a particular strain intensity factor reduces to the threshold value for the material the crack should stop. Predicted lengths of these cracks based on solutions for the intensity factor are in good agreement with the experimental data. Intensity factor trends for cracks in notches are shown to vary from an initial decrease to a minimum value followed by an increase and eventual convergence with the trend for the equivalent long crack for sharp notches to the blunt notch curves that continuously increased during their approach to the long crack trend. The type of trend exhibited by a given notch depends both on notch geometry and notch size. In blunt notches the maximum value of the threshold stress for crack propagation is at initiation. However, for sharp notches the peak value of the threshold stress vs crack length curves shifts to a finite length. Stresses above the initiation level but below this peak stress level result in fatigue cracks which start but do not propagate to failure. Predicted values of the fatigue limit stresses for a variety of sizes in a circular and an elliptical notch are in good agreement with experimental results.  相似文献   

20.
A new quantum action-based theory, dynamic quantized fracture mechanics (DQFM), is presented that modifies continuum-based dynamic fracture mechanics (DFM). The crack propagation is assumed as quantized in both space and time. The static limit case corresponds to quantized fracture mechanics (QFM), that we have recently developed to predict the strength of nanostructures. DQFM predicts the well-known forbidden strength and crack speed bands – observed in atomistic simulations – which are unexplained by continuum-based approaches. In contrast to DFM and linear elastic fracture mechanics (LEFM), that are shown to be limiting cases of DQFM and which can treat only large (with respect to the “fracture quantum”) and sharp cracks under moderate loading speed, DQFM has no restrictions on treating defect size and shape, or loading rate. Simple examples are discussed (i) strengths predicted by DQFM for static loads are compared with experimental and numerical results on carbon nanotubes containing nanoscale defects; (ii) the dynamic fracture initiation toughness predicted by DQFM is compared with experimental results on microsecond range impact failures of 2024-T3 aircraft aluminum alloy. Since LEFM has been successfully applied also at the geophysics size-scale, it is conceivable that DQFM theory can treat objects that span at least 15 orders of magnitude in size. International Conference on Fracture XI–Symposium 34, on Physics and Scaling in Fracture  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号