首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
随着电动汽车的发展,迫切需要具有高安全性、高能量密度、高功率、大容量、长寿命、高环保、低成本等优点的锂离子电池。层状结构的富锂锰基正极材料由于具有比容量高、平台电压高、热稳定性好、价格低廉的特点而被认为是有希望的未来电动汽车候选正极材料之一。尽管其拥有很高的比容量,但仍存在着首次循环不可逆容量高、倍率性能差等问题,纳米化是改进材料倍率性能的一种有效手段。本文以Ni O,Co_3O_4,Mn CO_3和Li_2CO_3为原料,成功制备得到了纳米级的锂离子电池正极材料Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和充放电测试对所得样品的结构、形貌及电化学性能进行了表征。结果表明,合成的Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2材料具有层状结构,一次颗粒均匀、细小,平均颗粒尺寸约为90 nm,并具有良好的电化学性能,在2.0~4.8 V以0.1C充放电时,首次放电比容量达到284 m Ah·g~(-1),首次库伦效率为86.1%。材料同时拥有良好的倍率性能,1.0C放电容量达到240 m Ah·g~(-1),3.0C放电容量达到210 m Ah·g~(-1)。  相似文献   

2.
以Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_2与碳酸锂为原料,采用高温固相法制备得锂离子电池正极材料LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2。用X射线衍射、扫描电镜以及充放电测试对样品进行表征,研究了烧结温度对材料电化学性能的影响。结果表明,当烧结温度为880℃时,合成的LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2材料物相单一无杂项,具有标准的的ɑ-Na FeO_2晶型。SEM测试表明,产物为球形且球形度较好,颗粒粒度均一,平均粒度均在10μm。880℃烧结的材料在3.0~4.3 V、0.1 C的倍率下放电比容量可达188 m A·h/g,在1.0 C的倍率下循环10次后电池容量保持率为95.46%,表现出较好的电化学性能。  相似文献   

3.
采用共沉淀法合成Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2前驱体,将前驱体和LiOH混合均匀后经高温煅烧合成了锂离子电池正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2,并对其进行电化学性能检测。试验表明,制备的电池在电压2.8~4.3V(vs.Li/Li+)区间内,0.1C倍率下的首次库伦效率为88.4%;在1C倍率下循环100次后,放电比容量为157.7mAh/g,容量保持率为96.6%。  相似文献   

4.
在传统碳酸酯电解液中添加氟代碳酸乙烯酯(FEC)可提高电解液的氧化分解电位,从而在高于4. 5 V(vs. Li/Li~+)电压下减少电解液溶剂的分解。用FEC部分或全部取代传统电解液中的碳酸乙烯酯(EC)溶剂,研究4. 7 V (vs. Li/Li~+)高电压下FEC对Li_(1. 18)Mn_(0. 52)Co_(0. 15)Ni_(0. 15)O_2电化学性能的影响。结果表明,FEC的加入提高了Li_(1. 18)Mn_(0. 52)Co_(0. 15)Ni_(0. 15)O_2电极的首次放电比容量及循环性能,且循环稳定性随FEC量的增加而变高,EC被FEC (33. 33%,质量分数)全部取代EC时电化学性能最佳;循环100周时,FEC为33. 33%的电解液中Li_(1. 18)Mn_(0. 52)Co_(0. 15)Ni_(0. 15)O_2电极的比容量为200. 5 mAh·g~(-1),容量保持率为85. 72%,而传统电解液中Li_(1. 18)Mn_(0. 52)Co_(0. 15)Ni_(0. 15)O_2电极的比容量在60周时衰减至115. 0 mAh·g~(-1),容量保持率仅为49. 89%。d Q/d V曲线表明,随FEC取代量的增加,循环过程中产生的电化学极化越小。X射线衍射(XRD)结果表明,在循环过程中,由于FEC的加入缓减了Li_(1. 18)Mn_(0. 52)Co_(0. 15)Ni_(0. 15)O_2结构的变化,且FEC全部取代EC时效果最佳。  相似文献   

5.
在表面活性剂、超声振动和机械搅拌的协同作用下,采用共沉淀法制备镍钴锰复合氢氧化物前驱体(Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2),最后将制备得到的纳米片前驱体与碳酸锂(Li_2CO_3)采用高温固相法烧结合成三元层状正极材料(LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2)。对于实验制得的前驱体和正极材料使用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、电感耦合等离子体发射光谱仪(ICP-OES)以及电池测试仪对前驱体和正极材料进行表征和电化学性能的检测,以探究表面活性剂对正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2和其前驱体的影响。实验结果表明:使用两种表面活性剂油胺(OA)和聚乙烯吡咯烷酮-K30(PVP-K30)所制备出的前驱体为近正六边形的纳米片,纳米片尺寸为400 nm左右。所制备出的正极材料在室温下,2.8~4.5 V,1C充放电条件下,其初始放电容量分别达到151.699和157.093 mAh·g~(-1),经过50次循环后容量保持率分别达到88.22%和99.04%。这样也表明所制备出的正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2具有良好的电化学性能。  相似文献   

6.
三元正极材料具有优异的电化学性能,但也存在阳离子混排、压实密度不高、充放电效率较低、倍率性能不理想、高温存储和循环性不好等问题。为改善LiNi_(0.8)Co_(0.15)Al_(0.05)O_2的电化学性能,采用固相法制备了碳包覆的LiNi_(0.8)Co_(0.15)Al_(0.05)O_2/C复合材料,并讨论了包覆质量比分别为1.02%,2.01%和2.97%(质量分数)时对材料的结构、形貌和电化学性质的影响。X射线衍射(XRD)和扫描电镜(SEM)测试结果显示:所有样品均为α-NaFeO2六方层状结构,具有类球形形貌。电化学测试结果表明:包覆量为2.01%时材料的综合性能最好,0.1C首次放电比容量达175.5 mAh·g~(-1),未包覆的材料为158.9 mAh·g~(-1),包覆后比纯相LiNi_(0.8)Co_(0.15)Al_(0.05)O_2提高了10.5%;3.0C进行50次循环,容量保持率为88.2%,而未经碳包覆的材料只有75.6%;锂离子的扩散系数由未包覆时的2.05×10~(-13)cm~2·s~(-1)增大到3.76×10~(-12)cm~2·s~(-1),相应的电荷的转移阻抗由79.4Ω减小到53.6Ω。  相似文献   

7.
采用射频磁控溅射技术制备LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2薄膜正极,分别在200,300,400,500和600℃下进行退火处理,利用扫描电镜、等离子体发射光谱仪、拉曼光谱仪、X射线衍射仪和X射线光电子能谱仪等对不同温度下退火后的薄膜电极的形貌、结构和物相组成等进行分析,并测试其电化学性能。结果表明,500℃下退火后的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2薄膜正极放电容量相对较低,但表现出优异的循环稳定性和倍率性能,在50(μA·h)/(cm~2·μm)倍率下循环60圈后,仍保持初始放电容量(130.3(μA·h)/(cm~2·μm))的88.5%,经过电流密度分别为50,100,200,500和50μA/(cm~2·μm)的倍率循环,容量可以恢复到初始值,优异的循环稳定性和倍率性能是由于退火改善了LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2的结晶性,并伴随着离子导电性和电子导电性的提高,但在更高温度(600℃)下退火的电池初始放电容量降低,这是由于高温退火产生的不纯相(Ni~(3+)离子物质)导致的,Co~(2+)和Mn~(3+)离子的出现是电池容量衰减的主要原因。  相似文献   

8.
采用共沉淀法制备了梯度核壳前驱体Ni_(0.8)Co_(0.08)Mn_(0.12)(OH)_2,并通过混锂煅烧合成了LiNi_(0.8)Co_(0.08)Mn_(0.12)O_2梯度正极材料。分别使用干混法和沉淀法对梯度正极材料进行了Al的掺杂改性。XRD及电解液浸泡实验表明,Al掺杂可以稳定梯度正极材料的层状结构并降低阳离子混排度,抑制正极材料在电解液中的溶解,从而提高材料的电化学性能。经沉淀法掺杂后正极材料在25℃下1 C循环100次容量保持率由92.5%提高到94.5%,55℃下1 C循环50次容量保持率由91.3%提高到95.8%。  相似文献   

9.
采用共沉淀法先合成[Ni_(0.83)Co_(0.11)Mn_(0.06)](OH)_2前驱体,在纯氧气氛下经过两段高温烧结生成LiNi_(0.83)Co_(0.11)Mn_(0.06)O_2正极材料。通过在前驱体配锂烧结过程中加入纳米TiO_2实现了Ti~(4+)掺杂,经过掺杂后的Li[Ni_(0.83)Co_(0.11)Mn_(0.06)]_(0.98)Ti_(0.02)O_2正极材料在1C电流密度下的放电比容量高达185.6mAh/g,循环100圈后容量维持在178.8mAh/g,容量保持率高达96.33%。  相似文献   

10.
采用简单的液相研磨法制备了纳米MoS_2修饰的富锂锰基正极材料Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2。恒电流充放电测试结果表明,经过纳米MoS_2修饰的材料表现出优异的电化学循环稳定性能。3%MoS_2修饰的材料在0.5C倍率下经过120次循环后,放电比容量仍高达235mA·h/g,容量保留率为88.4%,相较于空白样153.8mA·h/g的放电比容量和70.1%的容量保留率有显著提高。此外,与空白样的0.70V相比,3%MoS_2修饰的材料经过120次循环后电压衰减仅为0.44V。可见,材料在循环过程中的电压衰减也得到了明显改善。  相似文献   

11.
采用碳酸盐共沉淀法合成Li1+xNi0.6Co0.2Mn0.2O2Fx正极材料,研究了不同含量的Li、F复合掺杂对LiNi0.6Co0.2Mn0.2O2样品的晶型结构、形貌以及电化学性能的影响.研究结果表明:Li、F复合掺杂未改变LiNi0.6Co0.2Mn0.2O2样品的层状结构;掺杂后的样品颗粒细化;电化学循环性能和电极过程的可逆性明显得到提高.掺杂量x=0.06时,Li1+xNi0.6Co0.2Mn0.2O2Fx样品的首次充放电容量分别为168,160 mA·h/g,循环50次后容量为153 mA·h/g.  相似文献   

12.
Thenewgreenenvironmentprotectionbatteriesareofgreatimportanceinelectronicinformation ,newenergy ,environmentprotectionandothersignificanttechniquefields ,sothereisnotimetodelaythede velopmentofthegreenenvironmentprotectionbatter ies .LithiumionbatteryisthenewgenerationofrechargingbatteryfollowingCd NiandNi H2 batter ies ,whichhasmanyadvantagessuchashighworkvoltage (about 3.6V ) ,highspecificcapacity (thebulkspecificcapacityis 30 0Wh·L- 1,themassspe cificcapacityis 12 0W·g- 1) ,balanceddisc…  相似文献   

13.
解决镍基正极材料LiNi0.8Co0.1Mn0.1O2的电化学循环稳定性和高温循环性能是其产业化推广应用的关键。研究了掺杂铌改性高镍正极材料,优化材料的电化学性能,提升循环稳定性。首先以硫酸盐为原料,在N2保护气氛下,采用共沉淀法合成三元球形Ni0.8Co0.1Mn0.1(OH)2前驱体,通过高温固相反应与LiOH·H2O,Nb2O5合成Li(Ni0.8Co0.1Mn0.11-xNbxO2(x=0,0.01,0.02,0.03)系列正极材料。X射线衍射结果表明,Nb5+离子可少量进入正极材料晶格,并在正极材料表面形成化学稳定性好的Li3NbO4。当x=0.02时,在室温25 ℃,电压2.75~4.2 V,0.2 C倍率下首次放电比容量为172.9 mAh/g,100次循环后容量保持率为97.47%,在50 ℃,0.5 C倍率下循环20次容量基本不变,平均放电比容量为183.7 mAh/g,且该样品具有较好的倍率性能。   相似文献   

14.
以KCl为熔盐,采用熔盐法合成了锂离子电池正极材料LiMn1/3Ni1/3Co1/3O2,扫描电子显微镜(SEM)显示此方法制备产物具有较好的晶形,颗粒较均匀.XRD表征结果显示产物为层状结构,充放电测试结果显示出材料在3.6 V平台附近有较大的可逆容量.在900℃时保温8 h时合成的LiMn1/3Ni1/3Co1/3O2具有较好的电化学性能,制作成AA电池,在2.75~4.2 V之间进行充放电测试,在1 C倍率下放电,LiMn1/3Ni1/3Co1/3O2的初始放电容量可达132.9 mAh/g,循环50多次后容量仍为124.6 mAh/g,容量保持率为93.75﹪.  相似文献   

15.
采用共沉淀-高温固相法制备LiNi0.6Co0.1Mn0.3O2锂离子正极材料,并使用X 射线衍射仪(XRD)和扫描电镜(SEM)技术分别表征其结构和形貌.然后将所得LiNi0.6Co0.1Mn0.3O2正极材料组装成扣式电池,并表征其电化学性能,探讨烧结温度和锂配量对其电化学性能的影响.结果表明:所得LiNi0.6Co0.1Mn0.3O2正极材料的放电比容量随烧结温度的升高而增大,且在900℃时表现出最佳的电化学性能.室温下,1C倍率下,锂配量(n(Li)/n(Ni+ Co+ Mn)=1.09)时,正极材料的首次放电容量为143.7 mAh/g,50次循环后,正极材料的放电比容量仍有141.3 mAh/g,容量保持率为98.3%.  相似文献   

16.
以自制Ni0.4Co0.2Mn0.4(OH)2前驱体和Li_2CO_3为原料,在空气气氛下采用固相烧结工艺制备了LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2锂离子电池正极材料。通过SEM和XRD等手段对材料烧结前后形貌与结构进行表征,并测试了烧结后锂离子电池正极材料的电化学性能。结果表明,Ni0.4Co0.2Mn0.4(OH)2前驱体具有良好的片状嵌入结构,且烧结制备的LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料混排因子c/a=4.967 3,阳离子混排因子I(003)/I(104)=1.25、I(006+102)/I(101)=0.333、I(018)/I(110)=0.87,表明LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2具有良好的层状结构。在2.5~4.6V、0.2C和0.5C下,LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料的首次放电比容量分别为166和154mAh/g,循环80次后容量分别保持为111和100mAh/g,具有良好的电化学性能。  相似文献   

17.
采用改进溶胶-凝胶法合成了具有良好的晶体结构和电化学稳定性的正极材料Li[Ni1/3Co1/3Mn1/3]0.9Ti0.1O2,通过优化前驱体的制备来提高原子混合程度,从而达到改善材料循环稳定性的目的。XRD测试表明,样品的Li+/Ni2+混排程度很低,TEM图片显示材料的结晶度很高,原子排列有序,这有利于实现更大的锂离子扩散系数。在0.5 C倍率下循环200次后,材料的容量保持率高达84.6%,与未掺钛的LiNi1/3Co1/3Mn1/3O2仅为52.0%相比,钛掺杂的材料表现出优异的电化学性能。此外,掺钛材料在0.1、0.2、0.5、1.0、2.0和5.0 C时具有更好的充放电倍率性能,分别为164.9、162.4、152.4、142.4、129.7和102.8 mAh/g。研究成果可以为设计具有更好电化学性能的锂离子电池材料提供参考。  相似文献   

18.
随着新能源汽车及储能行业的快速发展,传统正极材料难以满足人们对电池高能量、高密度锂电池的要求。富含Li和Mn的层状氧化物xLi2MnO3·(1–x)LiMO2 (M=Ni,Mn,Co),其高比容量可超过250 mA·h·g–1,有希望成为下一代锂离子电池最理想的正极材料。但是,富锂材料仍存在首次循环不可逆容量高、循环性能差和倍率容量低等问题,为解决这些问题,本文阐述了富锂正极材料的结构和电化学反应之间的构效关系,讨论了金属氧化物、金属氟化物、碳、导电聚合物和锂离子导体等涂层材料对富锂正极材料电化学性能的影响规律及作用机理,同时还对以上涂层在富锂正极材料中应用的优缺点进行了总结。最后,对锂离子电池富锂正极材料的包覆改性的未来发展发现作出展望。   相似文献   

19.
Duringlastyears ,interestinthestudyofnanos tructuredmaterialshasbeenincreasing .Thisisduetorecentadvancesinmaterials′synthesesandcharacteri zationtechniquesandtherealizationthatthesemateri alsexhibitmanyinterestingandunexpectedphysicalaswellaschemicalpropertieswithanumberofpoten tialtechnologicalapplications .Forexample ,hydrogenstoragenanomaterialsarethekeytothefutureofthestorageandbatteries/cellsindustries[1,2 ] .TheTiFe ,ZrV2 andLaNi5phasesarefamiliarmaterialswhichabsorblargequantitiesof…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号