共查询到17条相似文献,搜索用时 46 毫秒
1.
通过双向电磁搅拌和稀土元素制备了半固态A356铝合金浆料.利用OM、XRD和SEM研究磁场频率30 Hz搅拌12 s时,无稀土、单一稀土0.5 %Ce(质量分数,下同)、混合稀土0.3 %La+0.2 %Yb以及电磁搅拌方式(单向连续搅拌、双向连续搅拌、双向间歇搅拌)对初生相形貌的影响.结果表明:在控制稀土等同总百分含量下,混合稀土对凝固组织优化程度大于单一稀土和无稀土,初生相平均等积圆直径和形状因子达到36.4 μm、0.82;在此基础上进一步对熔体施加不同搅拌方式处理,试验发现双向连续搅拌作用液态熔体形成了强烈的紊流和惯性冲击,加快了凝固体系的质量传输热量传递,晶粒尺寸和形貌相较于单向连续搅拌、双向间歇搅拌更加细小圆整. 相似文献
3.
5.
6.
7.
为了更为精细化地表达及控制铸坯质量,以H13模具钢电渣重熔铸坯凝固组织为研究对象,引入分形维数对其主体形貌特征进行定量描述。结果表明,基于数盒子法计算得到的分形维数可定量表征凝固组织形貌的自相似复杂程度,其值从柱状晶向中心等轴晶先减小后增大;凝固组织分形维数可作为衡量铸坯偏析程度(偏析率大小)的指标,且分形维数越大,对应区域偏析率越小,偏析越轻;通过凝固组织分形维数、偏析率和偏析点平均面积与二次枝晶间距关系的研究发现,使用二次枝晶间距表征铸坯凝固组织形貌差异并由此反映偏析程度的方法存在局限性。 相似文献
8.
9.
10.
11.
研究了半固态A356铝合金浆料的成形温度、压射比压和压射冲头速度对半固态A356铝合金流变压铸充填性的影响.实验结果表明:较高的半固态A356铝合金浆料的成形温度有利于获得良好的充填性.压射比压和压射冲头速度对半固态A356铝合金浆料充填性也具有较大的影响.在本实验条件下,压射冲头速度越大或压射比压越大,充填性越好.试片的壁厚对半固态A356铝合金浆料的充填性影响较大,试片壁厚越大,越容易充填.此外,采用低过热度浇注和弱电磁搅拌技术制备的A356铝合金浆料和流变压铸试片的组织分布很均匀,有利于获得优质的半固态压铸件. 相似文献
12.
13.
应用Ansys软件中电磁场模拟模块Ansoft以及流场模块Fluent,研究在单一低频旋转电磁场作用下A356-1.2 %La熔体中稀土La的运动规律以及分布规律. 通过对单一低频且搅拌时间短暂电磁搅拌情况下的A356-1.2 %La熔体进行建模仿真,并着重对电磁搅拌频率分别为f=5 Hz、15 Hz、30 Hz时稀土La的分布情况进行对比分析,最终得出当电磁搅拌频率f=30 Hz时熔体内稀土La分布相对均匀;且一定条件下随着电磁搅拌时间以及频率的增加,稀土La在A356-1.2 %La熔体内的分布也越均匀;并证实通过Ansys软件中电磁场模块Ansoft以及流场模块Fluent可以较好地对旋转电磁场内铝-稀土多相熔体中稀土的运动情况进行数值仿真. 相似文献
14.
在中间包对A1-5Ti-1B熔体施加电磁搅拌,然后连续铸挤成A1-5Ti-1B丝,研究了电磁搅拌对A1-5Ti-1B的显微组织与晶粒细化能力的影响,结果表明:电磁搅拌能够阻止TiB2粒子的团聚和沉淀,改善TiB2粒子的分布均匀性,提高A1-5Ti-1B的晶粒细化能力.A1-Ti1B的Ti、B元素含量分别为5.08%和1.02%,TiB2粒子平均尺寸为0.74μm,TiAl3相平均尺寸为15.7μm.添加0.2%的AI-5Ti-1B后保温2min,可使纯铝晶粒从2800μm细化至68μm,保温120min,晶粒未见长大. 相似文献
15.
利用低过热度浇注技术制备了半固态A356-Ce合金浆料,研究了稀土Ce对半固态A356合金的初生相形貌和尺寸的影响.研究结果表明:含有适量稀土Ce的A356铝合金经低过热度浇注可制备具有颗粒状和蔷薇状初生相的半固态浆料,合金熔体等温温度会影响Ce细化半固态A356合金中初生相的效果.Ce对半固态A356铝合金的初生相细化机理与稀土在铝合金中诱发的共晶反应有关. 相似文献
16.
E. Aguirre-De la Torre R. Pérez-Bustamante J. Camarillo-Cisneros C.D. Gómez-Esparza H.M. Medrano-Prieto R. Martínez-Sánchez 《中国稀土学报(英文版)》2013,31(8):811-816
The research of rare earths for the synthesis of materials with improved mechanical performance is of great interest when they are considered for potential applications in the automotive industry. In this regard, the effect on the mechanical properties and microstructure of the automotive A356 aluminum alloy reinforced with 0.2 (wt.%) Al-6Ce-3La (ACL) was investigated. The ACL was added to the melted A356 alloy in the as-received condition and processed by mechanical milling. In the second route, the effect of the ACL processed by mechanical milling and powder metallurgy techniques was investigated, and compared with the results obtained from the A356 alloy strengthened with ACL in the as-received condition. Microstructural properties were evaluated by means of X-ray diffraction in order to observe the solubility of Ce/La in the Al matrix. In addition, electron microscopy was employed in order to investigate the effect of milling time on the size and morphology of La/Ce phase under milling process. Mechanical properties of the A356 alloy modified with ACL were measured by hardness and tensile test. For comparison unmodified specimens of the A356 were characterized according to the previous procedure. The microstructural and mechanical characterization was carried out in specimens after solution and artificial aging. Observations in scanning electron microscopy indicated a homogeneous dispersion of La/Ce phases by using both routes; however, mechanical results, in the modified A356 alloy with the ACL in the as-received condition, showed an improvement in the mechanical performance of the A356 alloy over that reinforced with the ACL mechanically milled. 相似文献