首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methyl and ethyl esters as biodiesel fuels were prepared from linseed oil with transesterification reaction in non-catalytic supercritical fluids conditions. Biodiesel fuel is a renewable substitute fuel for petroleum diesel fuel made from vegetable or animal fats. Biodiesel fuel has better properties than that of petroleum diesel fuel such as renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. The purpose of the transesterification process is to lower the viscosity of the oil. The viscosity values of linseed oil methyl and ethyl esters highly decreases after transesterification process. The viscosity values of vegetable oils vary between 27.2 and 53.6 mm2 s?1, whereas those of vegetable oil methyl esters between 3.59 and 4.63 mm2 s?1. Compared with no. 2 diesel fuel, all of the vegetable oil methyl esters were slightly viscous. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. The transesterification of linseed oil in supercritical fluids such as methanol and ethanol has proved to be the most promising process. Methanol is the commonly used alcohol in this process, due in part to its low cost. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The most important variables affecting the methyl ester yield during the transesterification reaction are molar ratio of alcohol to vegetable oil and reaction temperature. Biodiesel has become more attractive recently because of its environmental benefits. Biodiesel is an environmentally friendly fuel that can be used in any diesel engine without modification.  相似文献   

2.
Progress in biodiesel processing   总被引:3,自引:0,他引:3  
Biodiesel is a notable alternative to the widely used petroleum-derived diesel fuel since it can be generated by domestic natural sources such as soybeans, rapeseeds, coconuts, and even recycled cooking oil, and thus reduces dependence on diminishing petroleum fuel from foreign sources. The injection and atomization characteristics of the vegetable oils are significantly different than those of petroleum-derived diesel fuels, mainly as the result of their high viscosities. Modern diesel engines have fuel-injection system that is sensitive to viscosity change. One way to avoid these problems is to reduce fuel viscosity of vegetable oil in order to improve its performance. The conversion of vegetable oils into biodiesel is an effective way to overcome all the problems associated with the vegetable oils. Dilution, micro-emulsification, pyrolysis, and transesterification are the four techniques applied to solve the problems encountered with the high fuel viscosity. Transesterification is the most common method and leads to monoalkyl esters of vegetable oils and fats, now called biodiesel when used for fuel purposes. The methyl ester produced by transesterification of vegetable oil has a high cetane number, low viscosity and improved heating value compared to those of pure vegetable oil which results in shorter ignition delay and longer combustion duration and hence low particulate emissions.  相似文献   

3.

Biodiesel from transesterification of vegetable oils is an excellent alternative fuel. There is, however, a need to develop a direct process for conversion of vegetable oils into gasoline-competitive biodiesel and other petroleum products. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The purpose of the transesterification process is to lower the viscosity of vegetable oil. Compared to No. 2 diesel fuel, all of the vegetable oils are much more viscous, whereas methyl esters of vegetable oils are slightly more viscous. The methyl esters are more volatile than those of the vegetable oils. Conversion of vegetable oils to useful fuels involves the pyrolysis and catalytic cracking of the oils into lower molecular products. Pyrolysis produces more biogasoline than biodiesel fuel. Soap pyrolysis products of vegetable oils can be used as alternative diesel engine fuel. The soaps obtained from the vegetable oils can be pyrolyzed into hydrocarbon-rich products. Zinc chloride catalyst contributed greatly to high amounts of hydrocarbons in the liquid product. The yield of ZnCl 2 catalytic conversion of the soybean oil reached the maximum 79.9% at 660 K.  相似文献   

4.
Abstract

The purpose of this work is to investigate biodiesel production processes from vegetable oils. Biodiesel fuel can be made from new or used vegetable oils and animal fats, which are non-toxic, biodegradable, renewable resources. The vegetable oil fuels were not acceptable because they were more expensive than petroleum fuels. Biodiesel has become more attractive recently because of its environmental benefits. With recent increases in petroleum prices and uncertainties concerning petroleum availability, there is renewed interest in vegetable oil fuels for diesel engines. Dilution of oils with solvents and microemulsions of vegetable oils lowers the viscosity, and some engine performance problems still exist. The purpose of the transesterification process is to lower the viscosity of the oil. Pyrolysis produces more biogasoline than biodiesel fuel.  相似文献   

5.
Abstract

The viscosity values of vegetable oils vary between 27.2 and 53.6 mm2/s, whereas those of vegetable oil methyl esters between 3.59 and 4.63 mm2/s. The viscosity values of vegetable oil methyl esters highly decreases after transesterification process. Compared to no. 2 diesel fuel, all of the vegetable oil methyl esters were slightly viscous. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. An increase in density from 860 to 885 kg/m3 for vegetable oil methyl esters or biodiesels increases the viscosity from 3.59 to 4.63 mm2/s, and the increases are highly regular. There is high regression between density and viscosity values vegetable oil methyl esters. The relationships between viscosity and flash point for vegetable oil methyl esters are irregular. An increase in density from 860 to 885 kg/m3 for vegetable oil methyl esters increases the flash point from 401 to 453 K, and the increases are slightly regular.  相似文献   

6.
Abstract

The objective of this study was to estimate mathematical relationships derived from biodiesel fuels from various vegetable oils by non-catalytic supercritical methanol and ethanol method. The vegetable oils are all extremely viscous with viscosities ranging from 10 to 20 times greater than petroleum diesel fuel. The aim of the transesterification process is to lower the viscosity of the oil. Methyl and ethyl esters as biodiesels were prepared from vegetable oils through transesterification by non-catalytic supercritical fluids. The biodiesels were characterized for their physical and main fuel properties including viscosity, density, flash point and higher heating value (HHV). The viscosities of biodiesels (3–5 mm2/s at 311 K) were much less than those of pure oils (27–54 mm2/s at 311 K), and their HHVs of approximately 40.5 MJ/kg were 10% less than those of petrodiesel fules (~45 MJ/kg). The most important variables affecting the ester yield during the transesterification reaction are molar ratio of alcohol to vegetable oil and reaction temperature. The viscosity values of vegetable oil methyl esters highly decreases after transesterification process. Compared to no. 2 diesel fuel, all of the vegetable oil methyl esters were slightly viscous. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. There is high regression between density and viscosity values vegetable oil methyl esters. The relationships between viscosity and flash point for vegetable oil methyl esters are considerably regular.  相似文献   

7.
《Biomass & bioenergy》2005,28(1):77-86
Vegetable oils and their methyl/ethyl esters are alternative renewable fuels for compression ignition engines. Different kinds of vegetable oils and their methyl/ethyl esters have been tested in diesel engines. However, tobacco seed oil and tobacco seed oil methyl ester have not been tested in diesel engines, yet. Tobacco seed oil is a non-edible vegetable oil and a by-product of tobacco leaves production. To the author's best knowledge, this is the first study on tobacco seed oil methyl ester as a fuel in diesel engines.In this study, potential tobacco seed production throughout the world, the oil extraction process from tobacco seed and the transesterification process for biodiesel production were examined. The produced tobacco seed oil methyl ester was characterized by exposing its major properties. The effects of tobacco seed oil methyl ester addition to diesel No. 2 on the performance and emissions of a four cycle, four cylinder turbocharged indirect injection (IDI) diesel engine were examined at both full and partial loads. Experimental results showed that tobacco seed oil methyl ester can be partially substituted for the diesel fuel at most operating conditions in terms of performance parameters and emissions without any engine modification and preheating of the blends.  相似文献   

8.
In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, methyl alcohol, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel oil substitute for internal combustion engines. Vegetable oils present a very promising alternative to diesel oil since they are renewable and have similar properties. Vegetable oils offer almost the same power output with slightly lower thermal efficiency when used in diesel engine [Srivastava A, Prasad R. Triglycerides-based diesel fuels. Renew Sustain Energy Rev 2000;4:111–33. [1]; Vellguth G. Performance of vegetable oils and their monoesters as fuels for diesel engines. SAE 831358, 1983. [2]; Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Int J Prog Energy Combust Sci 2005;31:466–87. [3]; Jajoo BN, Keoti RS. Evaluation of vegetable oils as supplementary fuels for diesel engines. In: Proceedings of the XV national conference on IC engines and combustion, Anna University Chennai, 1997. [4]; Altin R, Cetinkaya S, Yucesu HS. The potential of using vegetable oil fuels as fuel for diesel engines. Int J Energy Convers Manage 2000;42:529–38, 248. [5]; Gajendra Babu MK, Chandan Kumar Das LM. Experimental investigations on a Karanja oil methyl ester fuelled DI diesel engine. SAE 2006-01-0238, 2006. [6]; Agarwal D, Kumar Agarwal A. Performance and emission characteristics of a Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Int J Appl Therm Eng 2007;27:2314–23. [7]]. Research in this direction with edible oils have yielded encouraging results, but their use as fuel for diesel engine has limited applications due to higher domestic requirement [Scholl Kyle W, Sorenson Spencer C. Combustion Analysis of soyabean oil methyl ester in a direct injection diesel engine. SAE 930934, 1993. [8]; Nwafor OMI. Effect of advanced injection timing on the performance of rapeseed oil in diesel engines. Int J Renew Energy 2000;21:433–44. [9]; Nwafor OMI. The effect of elevated fuel inlet temperature on performance of diesel engine running on neat vegetable oil at constant speed conditions. Renew Energy 2003;28:171–81. [10]]. In view of this, Honge oil (Pongamia Pinnata Linn) being non-edible oil could be regarded as an alternative fuel for CI engine applications. The viscosity of Honge oil is reduced by transesterification process to obtain Honge oil methyl ester (HOME).Gasification is a process in which solid biomass is converted into a mixture of combustible gases, which complete their combustion in an IC engine. Hence, producer gas can act as a promising alternative fuel, especially for diesel engines by substituting considerable amount of diesel fuels. Downdraft moving bed gasifiers coupled with IC engine are a good choice for moderate quantities of available biomass, up to 500 kW of electric power. Hence, bioderived gas and vegetable liquids appear more attractive in view of their friendly environmental nature. Since vegetable oils produce higher smoke emissions, dual fuel operation could be adopted for improving their performance.  相似文献   

9.
In this investigation, castor methyl ester (CME) was prepared by transesterification using potassium hydroxide (KOH) as catalyst and was used in four stroke, single cylinder variable compression ratio type diesel engine. Tests were carried out at a rated speed of 1500 rpm at different loads. Straight vegetable oils pose operational and durability problems when subjected to long term usages in diesel engines. These problems are attributed to high viscosity, low volatility and polyunsaturated character of vegetable oils. The process of transesterification is found to be an effective method of reducing vegetable oil viscosity and eliminating operational and durability problems. The important properties of methyl ester of castor seed oil are compared with diesel fuel. The engine performance was analysed with different blends of biodiesel and was compared with mineral diesel. It was concluded that the lower blends of biodiesel increased the break thermal efficiency and reduced the fuel consumption. The exhaust gas temperature increased with increasing biodiesel concentration. The results proved that the use of biodiesel (produced from castor seed oil) in compression ignition engine is a viable alternative to diesel.  相似文献   

10.
The high viscosity of vegetable oils leads to problem in pumping and spray characteristics. The inefficient mixing of vegetable oils with air contributes to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI) engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible) and animal fat. The main resources for biodiesel production can be non-edible oils obtained from plant species such as Pongamia pinnata (Honge oil), Jatropha curcas (Ratanjyot), Hevea brasiliensis (Rubber) and Calophyllum inophyllum (Nagchampa). Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in CI engines with very little or no engine modifications. This is because it has properties similar to mineral diesel. This paper presents the results of investigations carried out on a single-cylinder, four-stroke, direct-injection, CI engine operated with methyl esters of Honge oil, Jatropha oil and sesame oil. Comparative measures of brake thermal efficiency, smoke opacity, HC, CO, NOX, ignition delay, combustion duration and heat release rates have been presented and discussed. Engine performance in terms of higher brake thermal efficiency and lower emissions (HC, CO, NOX) with sesame oil methyl ester operation was observed compared to methyl esters of Honge and Jatropha oil operation.  相似文献   

11.
《Biomass & bioenergy》2005,28(1):87-93
There is an increasing interest in many countries to search for suitable alternative fuels that are environment friendly. Although straight vegetable oils can be used in diesel engines, their high viscosities, low volatilities and poor cold flow properties have led to the investigation of various derivatives. Biodiesel is a fatty acid alkyl ester, which can be derived from any vegetable oil by transesterification. Biodiesel is a renewable, biodegradable and non-toxic fuel. In this study, Mahua oil (Madhuca indica seed oil) was transesterified with methanol using sodium hydroxide as catalyst to obtain mahua oil methyl ester. This biodiesel was tested in a single cylinder, four stroke, direct injection, constant speed, compression ignition diesel engine (Kirloskar) to evaluate the performance and emissions.  相似文献   

12.
Vegetable oils are a promising alternative among the different diesel fuel alternatives. However, the high viscosity, poor volatility and cold flow characteristics of vegetable oils can cause some problems such as injector coking, severe engine deposits, filter gumming, piston ring sticking and thickening of lubrication oil from long-term use in diesel engines. These problems can be eliminated or minimized by transesterification of the vegetable oils to form monoesters. These monoesters are known as biodiesel. The important advantages of biodiesel are lower exhaust gas emissions and its biodegradability and renewability compared with petroleum-based diesel fuel. Although the transesterification improves the fuel properties of vegetable oil, the viscosity and volatility of biodiesel are still worse than that of petroleum diesel fuel. The energy of the biodiesel can be released more efficiently with the concept of low heat rejection (LHR) engine. The aim of this study is to apply LHR engine for improving engine performance when biodiesel is used as an alternative fuel. For this purpose, a turbocharged direct injection (DI) diesel engine was converted to a LHR engine and the effects of biodiesel (produced from sunflower oil) usage in the LHR engine on its performance characteristics have been investigated experimentally. The results showed that specific fuel consumption and the brake thermal efficiency were improved and exhaust gas temperature before the turbine inlet was increased for both fuels in the LHR engine.  相似文献   

13.
Fuel crisis because of dramatic increase in vehicular population and environmental concerns have renewed interest of scientific community to look for alternative fuels of bio-origin such as vegetable oils. Vegetable oils can be produced from forests, vegetable oil crops, and oil bearing biomass materials. Non-edible vegetable oils such as linseed oil, mahua oil, rice bran oil, etc. are potentially effective diesel substitute. Vegetable oils have high-energy content. This study was carried out to investigate the performance and emission characteristics of linseed oil, mahua oil, rice bran oil and linseed oil methyl ester (LOME), in a stationary single cylinder, four-stroke diesel engine and compare it with mineral diesel. The linseed oil, mahua oil, rice bran oil and LOME were blended with diesel in different proportions. Baseline data for diesel fuel was collected. Engine tests were performed using all these blends of linseed, mahua, rice bran, and LOME. Straight vegetable oils posed operational and durability problems when subjected to long-term usage in CI engine. These problems are attributed to high viscosity, low volatility and polyunsaturated character of vegetable oils. However, these problems were not observed for LOME blends. Hence, process of transesterification is found to be an effective method of reducing vegetable oil viscosity and eliminating operational and durability problems. Economic analysis was also done in this study and it is found that use of vegetable oil and its derivative as diesel fuel substitutes has almost similar cost as that of mineral diesel.  相似文献   

14.
This paper investigates the scope of utilizing biodiesel developed from both through the methyl as well as ethyl alcohol route (methyl and ethyl ester) from Karanja oil as an alternative diesel fuel. The major problem of using neat Karanja oil as a fuel in a compression ignition engine arises due to its very high viscosity. Transesterification with alcohols reduces the viscosity of the oil and other properties have been evaluated to be comparable with those of diesel. In the present work, methyl and ethyl esters of Karanja oil were prepared by transesterification using both methanol and ethanol. The physical and chemical properties of ethyl esters were comparable with that of methyl esters. However, viscosity of ethyl esters was slightly higher than that of methyl esters. Cold flow properties of ethyl esters were better than those of methyl esters. Performance and exhaust emission characteristics of the engine were determined using petrodiesel as the baseline fuel and several blends of diesel and biodiesel as test fuels. Results show that methyl esters produced slightly higher power than ethyl esters. Exhaust emissions of both esters were almost identical. These studies show that both methyl and ethyl esters of Karanja oil can be used as a fuel in compression ignition engine without any engine modification.  相似文献   

15.
Recent concerns over the environment, increasing fuel prices and scarcity of its supply have promoted the interest in development of the alternative sources for petroleum fuels. At present, biodiesel is commercially produced from the refined edible vegetable oils such as sunflower oil, palm oil and soybean oil, etc. by alkaline-catalyzed esterification process. This process is not suitable for production of biodiesel from many unrefined non-edible vegetable oils because of their high acid value. Hence, a two-step esterification method is developed to produce biodiesel from high FFA vegetable oils. The biodiesel production method consists of acid-catalyzed pretreatment followed by an alkaline-catalyzed transesterification. The important properties of methyl esters of rubber seed oil are compared with other esters and diesel. Pure rubber seed oil, diesel and biodiesel are used as fuels in the compression ignition engine and the performance and emission characteristics of the engine are analyzed. The lower blends of biodiesel increase the brake thermal efficiency and reduce the fuel consumption. The exhaust gas emissions are reduced with increase in biodiesel concentration. The experimental results proved that the use of biodiesel (produced from unrefined rubber seed oil) in compression ignition engines is a viable alternative to diesel.  相似文献   

16.
Abstract

Biodiesel is a renewable fuel that can be produced from vegetable oils, animal fats, and used cooking oil including triglycerides. Biodiesel, an alternative biodegradable diesel fuel, is derived from triglycerides by transesterification with methanol and ethanol. Concerns about the depletion of diesel fuel reserves and the pollution caused by continuously increasing energy demands make biodiesel an attractive alternative motor fuel for compression ignition engines. There are four different ways of modifying vegetable oils and fats to use them as diesel fuel, such as pyrolysis (thermal cracking), dilution with hydrocarbons (blending), emulsification and transesterification. The most commonly used process is transesterification of vegetable oils and animal fats. The transesterification reaction is affected by molar ratio of glycerides to alcohol, catalysts, reaction temperature, reaction time and free fatty acids and water content of oils or fats. In the transesterification, free fatty acids and water always produce negative effects, since the presence of free fatty acids and water causes soap formation, consumes catalyst and reduces catalyst effectiveness, all of which result in a low conversion. Biodiesel has over double the price of diesel. The high price of biodiesel is in large part due to the high price of the feedstock.  相似文献   

17.

Numerous studies indicated that oil sources in the world will come to an end. As a result, new alternative energy sources will be required to substitute for oil. Some of the experimental studies showed that vegetable oil can be used as alternative fuel in diesel engines. The viscosity of vegetable oil is much higher than that of standard diesel fuel; therefore, the high viscosity of the vegetable oil can cause problems for injection systems and engine components. To decrease viscosity, cottonseed methyl ester was obtained from raw cottonseed oil by transesterification method. In this study, cottonseed methyl ester was used in a four-stroke, single cylinder, and air-cooled diesel engine as alternative fuel. Engine tests carried out at full load-different speed range, the engine torque and power of cottonseed oil methyl ester was found to be lower than that of diesel fuel in the range of 3–9% and specific fuel consumption was higher than that of diesel fuel by approximately 8–10%. CO 2 , CO, and NO x emissions of cottonseed methyl ester were lower than that of diesel fuel.  相似文献   

18.
The study endeavor to utilize esters of Balanites aegyptiaca (L.) Del(Balanites) as a fuel for diesel engine. Ester developed from balanites oil by the transesterification process is investigated for its properties and the engine performance. A single stage alkali-catalyzed esterification process by using 1.25% KOH, methyl alcohol 8:1 molar ratio with respect to balanites oil, gives the maximum ester yield of 95%. The performance and emission characteristics of the engine are analyzed using balanites oil methyl esters and diesel as fuel. The viscosity of balanites oil is found to be decreased by 89% after esterification, and the calorific value of balanites oil methyl esters is nearly 94% of the diesel fuel. The engine performance with balanites oil methyl ester as a fuel resembles to that of conventional diesel fuel, while the exhaust gas emissions are reduced with the use of balanites oil methyl esters.  相似文献   

19.
The world is confronted with the twin crises of fossil fuel depletion and environmental degradation. The indiscriminate extraction and consumption of fossil fuels have led to a reduction in petroleum reserves. Petroleum based fuels are obtained from limited reserves. These finite reserves are highly concentrated in certain region of the world. Therefore, those countries not having these resources are facing a foreign exchange crisis, mainly due to the import of crude petroleum oil. Hence it is necessary to look for alternative fuels, which can be produced from materials available within the country. Although vegetative oils can be fuel for diesel engines, but their high viscosities, low volatilities and poor cold flow properties have led to the investigation of its various derivatives. Among the different possible sources, fatty acid methyl esters, known as Biodiesel fuel derived from triglycerides (vegetable oil and animal fates) by transesterification with methanol, present the promising alternative substitute to diesel fuels and have received the most attention now a day. The main advantages of using Biodiesel are its renewability, better quality exhaust gas emission, its biodegradability and the organic carbon present in it is photosynthetic in origin. It does not contribute to a rise in the level of carbon dioxide in the atmosphere and consequently to the green house effect. This paper reviews the source of production and characterization of vegetable oils and their methyl ester as the substitute of the petroleum fuel and future possibilities of Biodiesel production.  相似文献   

20.
Biodiesel is a diesel replacement and renewable fuel that is manufactured from vegetable oils, animal fats or waste cooking oils. The production of biodiesel from edible oil is currently much more expensive than hydrocarbon-based fuel, due to the relatively high cost of edible oils. The cost of biodiesel can be reduced by using non-edible oils instead of edible oils. The purpose of the present study was to develop a method of esterification of non-edible oil like rubber seed oil (Hevea brasiliensis). The high free fatty acid content oil reacts quickly with alkaline catalysts to form soap, which prevents the separation of biodiesel and glycerol. A two-step process was used instead of the simple alkaline catalysed transesterification process. It consisted of an acid catalysed pre-processing followed by the usual alkaline catalysed process. The physical and chemical properties of biodiesel were analysed. The quantification of methyl esters were done by high-performance liquid chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号