首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
为研究受压焊接空心球节点火灾下的性能,利用高温试验炉,对不同空心球外径和壁厚、钢管外径和壁厚、钢材屈服强度和荷载比的6种受压焊接空心球节点试件进行了高温作用下的试验研究,得到了其在高温下的温度分布、位移特征和破坏形式,并研究了对其极限耐火时间的影响因素;根据欧洲规范,对受压焊接空心球节点高温作用下的性能进行了非线性有限元数值模拟,分析了节点的温度场分布规律和影响因素。通过分析高温作用下节点的位移变化特征,确定了其破坏模式;试验结果和有限元分析结果进行了对比,二者吻合较好。研究结果表明:增大焊接钢管壁厚和降低焊接空心球节点实际承受的荷载可以有效地延长受压焊接空心球节点的极限耐火时间;钢管根部是高温作用下受压焊接空心球节点的薄弱部位。图13表2参9  相似文献   

2.
基于火灾高温下空间网格结构的性能,本文根据欧洲规范了中高温下的钢材特性和国际标准升温曲线(ISO834),对单轴受拉焊接空心球节点高温下的性能进行了数值模拟,分析了空心球的温度场分布规律和极限耐火时间的影响因素。通过分析高温下空心球的应力和位移变化特征,确定了其破坏模式;结果表明钢管根部和赤道处是其高温下受拉承载力的薄弱环节。  相似文献   

3.
为研究火灾下受压加肋焊接空心球节点的性能,对2个足尺节点进行受火试验。通过试验得到了加肋焊接空心球节点在标准火灾下的节点表面温度场、不同荷载下节点的耐火时间、破坏形式以及位移特征。根据欧洲规范,建立了三维加肋焊接空心球节点的有限元模型,分析了火灾下节点温度发展规律及位移特征。有限元分析结果与试验结果的对比验证了有限元分析的正确性。研究结果表明:升温过程中,加肋焊接空心球节点中远离加劲肋处的球壳温度最高,靠近加劲肋以及钢管连接处的球壳温度较低;火灾下受压加肋焊接空心球节点的破坏具有突然性,破坏发生在钢管与球节点的连接处;荷载比大的球节点耐火时间短。  相似文献   

4.
《钢结构》2017,(10)
为研究高温对加肋焊接空心球节点受压承载能力的影响,采用数值模拟方法,对单向轴心受压的加肋焊接空心球节点在高温下的受压性能进行研究,分析焊接空心球节点在轴心受压荷载作用下的破坏模式,得到不同温度下焊接空心球的承载能力。分析结果表明:高温下焊接空心球节点的薄弱部分为钢管与球节点连接处;高温对加肋焊接空心球节点的承载能力有着很大影响,随着温度的升高,承载力逐渐降低,当温度超过400℃以后节点承载力下降迅速,尤其是在节点温度达到700℃时,节点的极限荷载只有常温下的20%左右;随着温度升高,球节点越来越早进入弹塑性阶段。不同厚度的加劲肋在不同温度下呈现不同的变形。  相似文献   

5.
为了得到火灾下加肋焊接空心球节点的温度场,通过试验与有限元分析研究了加肋焊接空心球节点火灾下的温度发展规律。将加肋焊接空心球节点在预定的升温曲线下进行加热,得到了球节点表面、节点内部加劲肋的温度。采用有限元软件建立了八个参数不同的三维有限元模型,研究了节点内部多表面相互辐射现象和结构钢在高温下的相变对火灾中加肋焊接空心球节点温度场的影响。结果显示,同纬度下,肋对应的节点球表面温度低于其余球面温度,球表面温度高于内部加劲肋温度。升温时球壳对加劲肋的热辐射影响不能忽略,采用中国规范推荐的钢材热学性能会使节点在达到相变温度后的计算结果偏保守,节点内非受火表面的空气对流传热对加肋焊接空心球节点温度场的影响可忽略。  相似文献   

6.
为研究方钢管混凝土柱-钢梁T形件连接节点的耐火性能,通过验证已有试验,在模型可靠的基础上,建立了节点在钢梁下翼缘以下区域受火及钢梁上翼缘以上区域受火两种工况下耐火极限有限元计算模型.分析了在两种受火工况下柱端火灾荷载比、梁端火灾荷载比、梁柱线刚度比对节点耐火极限、破坏模态的影响.结果 表明:当节点钢梁下翼缘以下区域受火...  相似文献   

7.
为考察一种新型装配式混凝土框架节点的抗火性能,采用有限元分析软件ABAQUS进行模拟火灾分析,研究柱轴压比、梁荷载比、轴压偏心率、混凝土保护层厚度、节点连接螺栓直径对节点抗火性能影响。结果表明,所有分析节点耐火极限均能满足规范要求,且在火灾中均以梁变形过大失效;在接近耐火极限时,节点变形速度明显增大,破坏具有突然性;分析参数中,耐火极限随轴压比、荷载比、偏心率的增大而减小,随混凝土保护层厚度、螺栓直径增大而增大,其中轴压比、偏心率和混凝土保护层厚度的变化对耐火极限影响较大。  相似文献   

8.
采用ABAQUS有限元分析软件建立装配式框架中节点上部和下部受火的分析模型,分析重要截面的温度场分布,并将耐火极限的计算值与试验值进行对比验证.研究一定参数范围内荷载比、配筋率、线刚度比对构件耐火极限的影响.研究表明:在不同的受火条件下,梁端变形在升温起初变化缓慢,而接近耐火极限时变形加快,破坏具有一定的突然性.荷载比对节点的耐火极限影响较为显著,表现为荷载比越大,耐火极限越小;配筋率增大时,节点耐火极限变小;随着线刚度比变大时,耐火极限变大.不同受火边界对中节点的耐火极限有一定的影响,两者耐火极限相差0.03%.在相同荷载比、配筋率、线刚度比条件下,上部受火节点耐火极限较下部受火耐火极限小.  相似文献   

9.
《门窗》2015,(9)
耐火极限是恒量构件抵抗火灾能力的一个重要概念。对于高温下的普钢筋混凝土框架节点,由于强节点弱构件的原则,节点的耐火极限往往是由于梁端塑性铰的出现而达到。文中依据其它文献的试验结果,通过两种耐火极限的分析方法进行对比,对普通钢筋混凝土梁式构件耐火极限的计算公式对框架节点的适用性进行了研究。  相似文献   

10.
为了解钢筋混凝土叠合梁在火灾高温下的耐火性能,利用有限元分析软件ABAQUS建立了外荷载和火灾高温共同作用下叠合梁有限元模型。基于该模型对钢筋混凝土叠合梁的温度场、耐火极限和高温下叠合梁内力进行了分析,并对比了叠合梁与现浇梁在相同荷载比和混凝土强度等级下的耐火极限。研究结果表明:叠合梁在下表面受火下的温度场沿着受火面向内部混凝土呈现下降的趋势,即温度靠近火焰面高,背离火焰面低;存在一个最佳的剪跨比使得叠合梁耐火极限最大;受火面对叠合梁耐火极限影响显著,受火面越少相应叠合梁耐火极限越高;叠合梁纵筋达到屈服强度后不会立即破坏,反而还能继续承受荷载;叠合梁的耐火极限略大于现浇梁。  相似文献   

11.
为了获得高强度Q690钢柱的耐火性能,使用电炉对无防护足尺焊接H形Q690钢柱进行模拟ISO 834升温条件下耐火试验。测量得到不同荷载比下Q690钢柱温度、轴向位移、侧向位移与受火时间的关系,基于试验数据得到钢柱的临界温度和耐火极限。采用ABAQUS有限元软件建立钢柱耐火性能分析模型,考虑钢材高温蠕变和焊接残余应力的影响,模拟得到了钢柱的受火响应,其与试验结果吻合良好。利用验证的有限元模型分析了荷载比、长细比和升温速率对钢柱受力性能的影响。研究表明,无防护的Q690钢柱在受火20min左右发生破坏,破坏模式为整体失稳破坏;荷载比对临界温度影响较大,长细比和升温速率影响较小;Q690钢柱的临界温度比GB 51249—2017《建筑钢结构防火技术规范》和欧洲规范EN 1993-1-2的计算结果低60℃左右。最后提出了高强Q690钢柱抗火设计的简化方法。  相似文献   

12.
An experimental programme and associated parametric analysis of overlapped CHS-to-SHS welded N-joints were carried out. Two partially overlapped CHS-to-SHS welded N-joints were tested to failure under overlapping brace axial compression and chord axial loading. Elastic-plastic large deflection finite element analysis (FEA) of the experimental joints was performed and the FEA results for the failure mode and ultimate capacity are found to be in good agreement with the tests results. A detailed parametric study is subsequently conducted to examine the failure modes and to study the effect of geometric parameters and chord forces on the ultimate bearing capacity of the joints. The analytical results show that there are four possible failure modes of the joint under overlapping brace axial compression. It also reveals that brace-to-chord width ratio, chord width-to-its thickness ratio and brace-to-chord thickness ratio have a large effect on the failure mechanism and ultimate bearing capacity of overlapped CHS-to-SHS N-joints. Furthermore, the effect of chord compression force on the ultimate bearing capacity of the joints cannot be neglected.  相似文献   

13.
网架(壳)结构中,当杆件的轴力较大、焊接空心球节点承载力不能满足设计要求时,采用钢管贯通焊接球来提高节点的承载力是目前最有效的措施之一。本文采用ANSYS有限元程序,弹塑性应力—应变关系和Von-Mises屈服准则,同时考虑几何非线性的影响,对钢管贯通焊接球节点的极限承载力进行了较为详细的计算分析。本文首先对六组空心球节点进行计算,并与试验结果进行对比来验证本文模型的正确性,进而研究钢管贯通焊接球在单向受力、平面受力和空间受力状态下节点的破坏模式和极限承载力,并比较了不同球壁厚钢管贯通焊接球节点的承载力。本文的分析结果对实际工程设计具有一定的指导意义。  相似文献   

14.
标准火灾作用下钢管混凝土短柱落锤动态冲击试验研究   总被引:6,自引:0,他引:6  
采用落锤冲击实验机进行ISO-834标准火灾作用下钢管混凝土短柱抗冲击性能试验研究,考察受火时间、冲击速度、冲击能量和含钢率对其抗冲击性能的影响。试验量测钢管表面温度、冲击力与压缩变形时程曲线。试验结果表明,受火时间、冲击速度、冲击能量和含钢率均对高温下钢管混凝土的动态力学性能有影响;受火时间对冲击极限承载力和残余变形的影响最为显著,其余参数对冲击承载力影响不大,而试件的残余变形随着受火时间和冲击能量的增大而增大,随着含钢率的增大而减小。常温和火灾下钢管混凝土在冲击荷载作用下产生显著的压缩变形,遭受不同程度的破坏,但仍能够保持很好的截面完整性,说明钢管混凝土在火灾(高温)下具有良好的抗冲击能力,适用于有火灾(高温)抗冲击、抗倒塌设计需求的结构。  相似文献   

15.
为了考察受轴向约束的型钢混凝土柱的耐火性能,以荷载比、偏心率和含钢率为参数,开展了7根轴向约束型钢混凝土柱的耐火试验。采用恒载升温模式,研究了火灾下受轴向约束的型钢混凝土柱的温度分布、位移、变形、耐火极限及破坏形态。试验结果表明:荷载比相同时,施加在轴心受压柱顶的竖向荷载大于偏心受压柱。对于轴心受压柱,高温下柱首先缓慢膨胀,然后逐渐压缩破坏;由于轴向约束分担了柱的竖向荷载,压缩变形随时间变化较为缓和,轴向约束延长了柱的耐火极限。对于偏心受压柱,高温下其膨胀变形大于轴心受压柱,且膨胀变形先增加再减小;轴向约束增加了柱的竖向荷载,缩短了柱的耐火极限。荷载比对轴向约束型钢混凝土柱耐火极限影响显著,荷载比越大,耐火极限越小。当荷载比不大于0.5时,偏心率越大,柱的耐火极限会相应增大。含钢率增加,会在一定程度上延长柱的耐火极限。  相似文献   

16.
为了考察受轴向约束的型钢混凝土柱的耐火性能,以荷载比、偏心率和含钢率为参数,开展了7根轴向约束型钢混凝土柱的耐火试验。采用恒载升温模式,研究了火灾下受轴向约束的型钢混凝土柱的温度分布、位移、变形、耐火极限及破坏形态。试验结果表明:荷载比相同时,施加在轴心受压柱顶的竖向荷载大于偏心受压柱。对于轴心受压柱,高温下柱首先缓慢膨胀,然后逐渐压缩破坏;由于轴向约束分担了柱的竖向荷载,压缩变形随时间变化较为缓和,轴向约束延长了柱的耐火极限。对于偏心受压柱,高温下其膨胀变形大于轴心受压柱,且膨胀变形先增加再减小;轴向约束增加了柱的竖向荷载,缩短了柱的耐火极限。荷载比对轴向约束型钢混凝土柱耐火极限影响显著,荷载比越大,耐火极限越小。当荷载比不大于0.5时,偏心率越大,柱的耐火极限会相应增大。含钢率增加,会在一定程度上延长柱的耐火极限。  相似文献   

17.
为了研究型钢混凝土框架整体结构的耐火性能,为其抗火设计提供参考,采用受火楼层建立精细化有限元计算模型、非受火楼层建立梁单元计算模型的方法,建立了型钢混凝土框架整体结构的耐火性能计算模型。考虑火灾位置、荷载分布形式、柱轴压比等参数的影响,对火灾下型钢混凝土框架整体结构的变形规律、承载机制、破坏形态以及耐火极限进行参数分析。分析结果表明:火灾下框架结构出现了整体破坏和局部破坏两种典型的破坏形态,受火构件受到的约束作用对其耐火性能有较大的影响;在局部破坏形态中,由于受热膨胀,火灾下框架梁首先出现了较大的轴压力,受火框架梁处于压弯受力状态;之后,框架梁出现了悬链线效应,轴力对框架梁的受力状态有较大影响;在整体破坏形态中,根据轴压比及荷载分布形式的不同,框架出现了中柱破坏和边柱破坏两种典型破坏形态,同时,随楼层受火位置的升高,柱的轴压比减小,框架结构的耐火极限增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号