首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Vahedi A  Gorczyca B 《Water research》2012,46(13):4188-4194
Here we introduce a distribution of floc fractal dimensions as opposed to a single fractal dimension value into the floc settling velocity model developed in earlier studies. The distribution of fractal dimensions for a single floc size was assumed to cover a range from 1.9 to 3.0. This range was selected based on the theoretically determined fractal dimensions for diffusion-limited and cluster-cluster aggregation. These two aggregation mechanisms are involved in the formation of the lime softening flocs analyzed in this study. Fractal dimensions were generated under the assumption that a floc can have any value of normally distributed fractal dimensions ranging from 1.9-3.0. A range of settling velocities for a single floc size was calculated based on the distribution of fractal dimensions. The assumption of multiple fractal dimensions for a single floc size resulted in a non-unique relationship between the floc size and the floc settling velocity, i.e., several different settling velocities were calculated for one floc size. The settling velocities calculated according to the model ranged from 0 to 10 mm/s (average 2.22 mm/s) for the majority of flocs in the size range of 1-250 μm (average 125 μm). The experimentally measured settling velocities of flocs ranged from 0.1 to 7.1 mm/s (average 2.37 mm/s) for the flocs with equivalent diameters from 10 μm to 260 μm (average 124 μm). Experimentally determined floc settling velocities were predicted well by the floc settling model incorporating distributions of floc fractal dimensions calculated based on the knowledge of the mechanisms of aggregation, i.e., cluster-cluster aggregation and diffusion-limited aggregation.  相似文献   

2.
Urban runoff is primarily treated by settling particles. One important parameter in the design of these settling basins is particle settling velocity. Yet, this parameter is rarely measured. A modified elutriation device is developed to measure particle settling velocity distribution for use in stormwater runoff treatment design and performance evaluation. The elutriation device has distinct advantages over settling column measurement, including (1) less time requirement to make measurements, and (2) flexibility to operate at various flow rates to cover wide ranges of particle settling velocity. Major modifications of the existing elutriation devices include using a variable speed pump, changing the glass column to plastic, and adding screens at the flow inlet for more uniform velocity distribution while making the column shorter. The results of the experiments showed that the particles retained in each column of the modified elutriation device could be predicted by assuming a fully-developed, laminar velocity profile across the cross-section of each column. Operation of the device under two flow rates and multiple columns increased the range of settling velocities measured. The information presented in this paper may be used to develop standard protocols for the evaluation of particle settling velocity in stormwater.  相似文献   

3.
Aerobic granulation in a sequencing batch airlift reactor   总被引:66,自引:0,他引:66  
Aerobic granular sludge was cultivated in an intensely mixed sequencing batch airlift reactor (SBAR). A COD loading of 2.5 kg Acetate-COD/(m3 d) was applied. Granules developed in the reactor within one week after inoculation with suspended activated sludge from a conventional wastewater treatment plant. Selection of the dense granules from the biomass mixture occurs because of the differences in settling velocities between granules (fast settling biomass), and filaments and flocs (slow settling biomass). At 'steady state' the granules had an average diameter of 2.5 mm, a biomass density of 60g VSS/I of granules, and a settling rate of > 10 m/h. The biomass consisted of both heterotrophic and nitrifying bacteria. The reactor was operated over a long period during which the granular sludge proved to remain stable. The performance of the intermittently fed SBAR was compared to that of the continuously fed biofilm airlift suspension reactor (BASR). The most importance difference was that the density of the granules in the SBAR was much higher than the density of the biofilms in the BASR. It is discussed that this could be due to the fact that the SBAR is intermittently fed, while the BASR is continuously fed.  相似文献   

4.
In estuarine and coastal environments, flocculation occurs between particles of different fractal dimensions and of different densities. Questions remain concerning the level of detail required to model particle flocculation and settling in these heterogeneous systems. This paper compares the goodness of fit between two flocculation models, using measured time series particle size distribution data collected from clay, colloidal silica, emulsified crude oil, clay-crude oil, and silica-crude oil systems. The coalesced sphere (CS) flocculation model includes the effects of heterogeneous particle size and density; the modified coalesced fractal sphere (mCFS) model adds effects due to heterogeneous fractal dimension. Goodness of fit was quantified using values of a minimized objective function, the mean of the sum of the square of the relative residuals (MSSRR). For nearly all tested experimental conditions, MSSRR values varied less than 5% between the CS and mCFS flocculation models. Additionally, collision efficiency values for single-particle-type (alpha(HOMOO)) and dual-particle-type (alpha(HETT)) systems were obtained through parameter regression using the CS and mCFS models. Using the mCFS model, estimated fractal dimension (D) values obtained for clay and clay-oil systems were between 2.6 and 3.0, lower than that postulated by the CS model but higher than that estimated experimentally by the particle concentration technique. The Stokes settling velocity of a clay aggregate of a given mass is reduced with decreased fractal dimension. This results in clay-oil flocculation occurring faster than floc sedimentation in the studied hydrodynamic range. Thus, the mCFS model provides insights to the fate of spilled oil in inland and coastal waters.  相似文献   

5.
Helminth parasite eggs in low quality water represent health risks when used for irrigation of crops. The settling velocities of helminth eggs (Ascaris suum, Trichuris suis, and Oesophagostomum spp.) and wastewater particles were experimentally determined in tap water and in wastewater using Owen tubes. The settling velocities of eggs in tap water was compared with theoretical settling velocities calculated by Stoke’s law using measurements of size and density of eggs as well as density and viscosity of tap water. The mean settling velocity in tap water of 0.0612 mm s−1 found for A. suum eggs was significantly lower than the corresponding values of 0.1487 mm s−1 for T. suis and 0.1262 mm s−1 for Oesophagostomum spp. eggs. For T. suis and Oesophagostomum spp. eggs the theoretical settling velocities were comparable with the observed velocities in the Owen tubes, while it was three times higher for A. suum eggs. In wastewater, the mean settling velocity for A. suum eggs (0.1582 mm s−1) was found to be different from T. suis (0.0870 mm s−1), Oesophagostomum spp. (0.1051 mm s−1), and wastewater particles (0.0474 mm s−1). This strongly indicates that in low quality water the eggs are incorporated into particle flocs with different settling velocities and that the settling velocity of eggs and particles is closely associated. Our results document that there is a need to differentiate the sedimentation of different types of helminth eggs when assessing the quality of low quality water, e.g. for irrigation usage. The results can also be used to improve existing models for helminth egg removal.  相似文献   

6.
Lant P  Hartley K 《Water research》2007,41(11):2437-2448
The aim of this work was to characterise the solids in an anaerobic sewage treatment process. Hindered settling velocity, particle size distributions (PSD), influent and effluent COD(P)/SS and discrete settling velocity distributions were all measured. The anaerobic migrating bed reactor (AMBR) solids were mainly flocculent and had a settling rate equivalent to a good settling activated sludge ( approximately SSVI=60 mL/g). The PSD of the anaerobic solids were very different to PSD for activated sludge flocs, with the anaerobic solids having a modal size an order of magnitude smaller than activated sludge, but a range of particle sizes being two orders of magnitude larger. There was a far greater range in size and structure in the anaerobic solids. The anaerobic process solids were primarily feed solids undergoing VSS destruction (hydrolysis). The biological mass was small. The solids seemed to retain their size as the volatiles were degraded and the density decreased ('skeletons' of the influent particulates). The small fraction of slowly settling solids, which have been identified to have a similar modal size but lower density than the mixed solids in the reactor, pose a solids retention time (SRT) control problem when relying on settling alone for solids retention.  相似文献   

7.
Two expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactors (3.38 l active volume) were used to directly compare psychrophilic (15 degrees C), anaerobic digestion (PAD) to mesophilic (37 degrees C) anaerobic digestion (MAD) for the treatment of a brewery wastewater (chemical oxygen demand (COD) concentration of 3,136+/-891 mg l(-1)). Bioreactor performance was evaluated by COD removal efficiency and biogas yields at a range of hydraulic and organic loading rates. Specific methanogenic activity (SMA) assays were also employed to investigate the activity of the biomass in the bioreactors. No significant difference in the COD removal efficiencies (which ranged from 85-93%) were recorded between PAD and MAD during the 194-d trial at maximum organic and hydraulic loading rates of 4.47 kg m(-3) day(-1) and 1.33 m(3) m(-3) day(-1), respectively. In addition, the methane content (%) of the biogas was very similar. The volumetric biogas yield from the PAD bioreactor was approximately 50% of that from the MAD bioreactor at an organic loading rate of 4.47 kg COD m(-3) day(-3) and an applied liquid up-flow velocity (V(up)) of 2.5 m h(-1). Increasing the V(up) in the PAD bioreactor to 5 m h(-1) resulted in a volumetric biogas production rate of approximately 4.1 l d(-1) and a methane yield of 0.28 l CH(4) g(-1) COD d(-1), which were very similar to the MAD bioreactor. Significant and negligible biomass washout was observed in the mesophilic and psychrophilic systems, respectively, thus increasing the sludge loading rate applied to the former and underlining the robustness of the latter, which appeared underloaded. A psychrotolerant mesophilic, but not truly psychrophilic, biomass developed in the PAD bioreactor biomass, with comparable maximum SMA values to the MAD bioreactor biomass. PAD, therefore, was shown to be favourably comparable to MAD for brewery wastewater treatment and biogas generation.  相似文献   

8.
Physical properties of activated sludge flocs, especially settling and dewatering properties, are very important for efficient and economical treatment of wastewaters in activated sludge systems.

The physiological and biochemical nature of activated sludge flocs and hence the settling and dewatering properties are greatly affected by the temperature and pH of the aeration basin. Therefore, in this study the effects of temperature and pH on the physical properties (settleability, filterability and compressibility) of activated sludge were investigated.

From the results it was observed that, as the operating temperatures of the reactors were increased, zone settling velocities decreased, whereas sludge volume indices and specific resistance to filtration values increased. Up to 25°C sludges showed low compressibilities. However, they became highly compressible by the increase in temperature after 25°C.

On the other hand, with the increase of the pH of the reactor zone settling velocities, specific resistance to filtration values and compressibility coefficients increased, whereas sludge volume indices decreased.  相似文献   

9.
The toxicity of three heavy metals (copper, zinc and nickel) on an activated sludge biomass was studied by measuring several parameters of microbiological activity and the dynamics of microbial community composition. The effects on the microflora in the activated-sludge tank were evaluated by dosing the tank with different metal concentrations and a non-inhibiting concentration of copper for a 2-week period. The relationship between biological effects and chemical measurements was elucidated by principal component analysis (PCA). The biochemical data suggested a higher sensitivity of nitrifiers to these metals than heterotrophs. This was confirmed by fluorescent in situ hybridization (FISH) analysis on the microbial community. The impact of copper was displayed by biomass deflocculating phenomena (pin-point) and a decrease in the beta-proteo bacteria component. In addition, the zone settling velocity (ZSV) was shown not to be a good indicator of chronic toxicity phenomena. Finally, the sequence of biomass metal accumulation capability was assessed, and corresponds to Cu>Ni>Zn.  相似文献   

10.
Dai X  Boll J 《Water research》2006,40(6):1321-1325
Understanding transport behavior of Cryptosporidium parvum oocysts and Giardia lamblia cysts (together referred to as (oo)cysts) in overland flow is important for beneficial uses of receiving water bodies. Like sediment, (oo)cysts are subjected to deposition once they are present in overland flow or low flow environments like reservoirs, wetlands and sedimentation basins. The objectives of this paper are to present the theory and experiment to determine the free settling velocity (v(s)) of (oo)cysts and to compare experimental settling velocities to estimates using Stokes' law. A settling experiment was designed to quantify the v(s) of (oo)cysts in an aqueous column. C. parvum oocysts used were spherical with average diameter (+/-1SD) of 6.6+/-1.1 microm. G. lamblia cysts were oval shaped (average eccentricity = 1.48+/-0.19) with average size of 11.8 +/-1.3 microm. Average densities were 1009 kg m(-3) for C. parvum oocysts and 1013 kg m(-3) for G. lamblia cysts. Observed experimental settling velocities are 0.27 microm s(-1) and 0.67 microm s(-1) for C. parvum and G. lamblia, respectively. Estimated average settling velocities using Stokes' law were 0.36 microm s(-1) for C. parvum and 0.84 microm s(-1) for G. lamblia. R-squared values of the observations from the settling experiments with the Stokes' law estimation are 0.87 and 0.88 for G. lamblia and C. parvum, respectively. Our results suggest that Stokes' law can be used to estimate settling velocities of (oo)cysts. Qualitatively, the low settling velocities indicate that (oo)cysts will very slowly settle out of suspension.  相似文献   

11.
Schuler AJ  Jang H 《Water research》2007,41(10):2163-2170
Recent research has demonstrated that biomass density can vary in activated sludge systems, and that this can affect biomass settleability. Other factors related to floc structure are well known to affect settleability, and these can also vary considerably across samples. A new method to isolate density effects on sedimentation was developed and applied based on the addition of commercially available, high and low density microspheres. Density was a linear function of microsphere dose in five full-scale samples, and it was negatively correlated with sludge volume index (SVI) values. Density effects on SVI were similar to previous reports where density varied with biomass polyphosphate content. A new method to calculate water content and floc volume was developed and applied, and water content was inversely correlated with density, polyphosphate, and non-volatile suspended solids. These results suggest microsphere addition may be useful in future studies of biomass sedimentation and other properties.  相似文献   

12.
Settling velocity is a crucial parameter in granular sludge technology. In this study the effects of temperature and salt concentrations on settling velocities of granular sludge particles were evaluated. A two-fold slower settling velocity for the same granules was observed when the temperature of water decreases from 40 °C to 5 °C. Settling velocities also decreased with increasing salt concentrations. Experiments showed that when granules were not pre-incubated in a solution with increased salt concentration, they initially floated. The time dependent increase in mass and hence in settling speed of a granule due to salt diffusion into the granule was dependent on the granule diameter. The time needed for full salt equilibrium with the bulk liquid took 1 min for small particles from the top of the sludge bed and up to 30 min for big granules from the bottom of the sludge bed. These results suggest that temperature and salt concentration are important parameters to consider in the design, start-up and operation of granular sludge reactors and monitoring of these parameters will aid in a better control of the sludge management in anaerobic and aerobic granular sludge technology. The observations also give an explanation for previous reports which were suggesting that a start-up of granular sludge reactors is more difficult at low temperatures.  相似文献   

13.
Settling velocity is a crucial parameter in granular sludge technology. In this study the effects of temperature and salt concentrations on settling velocities of granular sludge particles were evaluated. A two-fold slower settling velocity for the same granules where observed when the temperature of water decreases from 40 °C to 5 °C. Settling velocities also decreased with increasing salt concentrations. Experiments showed that when granules were not pre-incubated in a solution with increased salt concentration, they initially floated. The time dependent increase in mass and hence in settling speed of a granule due to salt diffusion into the granule was dependent on the granule diameter. The time needed for full salt equilibrium with the bulk liquid took 1 min for small particles from the top of the sludge bed and up to 30 min for big granules from the bottom of the sludge bed. These results suggest that temperature and salt concentration are important parameters to consider in the design, start-up and operation of granular sludge reactors and monitoring of these parameters will aid in a better control of the sludge management in anaerobic and aerobic granular sludge technology. The observations also give an explanation for previous reports which were suggesting that a start-up of granular sludge reactors is more difficult at low temperatures.  相似文献   

14.
全尾砂固结排放工艺是一种处理尾矿的高效安全新型排放工艺,尾砂沉降性能综合反映了尾砂物理特性、离析等特点,是影响过滤机对尾矿浓缩脱水效率的重要因素,对全尾砂固结干排工艺的应用研究具有指导意义。采用全尾砂料浆进行单因素试验,考察不同浓度下料浆沉降性能,建立了不同浓度全尾砂料浆沉降速度的数学模型。根据沉降速度数学模型可知较低浓度料浆沉降速度快,沉降周期长且极限下沉量大,而较高浓度料浆则相反;全尾砂料浆沉降速度曲线大致符合单峰右拖尾类型:初期沉降速度不断增大直至最大下沉速度,以最大沉速下沉一定时间后速度减缓,最后停止沉降。采用均匀设计法,建立不同浓度及不同粒级组成的5因素6水平均匀试验,对配级尾砂沉降性能进行研究。试验结果表明,极限下沉量与浓度、-210~+120 μm尾砂含量、-120~+75 μm尾砂含量呈负相关,与+210 μm尾砂含量、-75 μm尾砂含量呈正相关;浓度对尾砂料浆的极限下沉量影响最大,粗颗粒(+210 μm)次之,细颗粒(-75 μm)对极限下沉量影响排在粗颗粒和浓度之后,中粒径(-210~+75 μm)的影响最小。在浓度较低时,配级尾砂沉降速度比全尾砂缓慢,尾砂级配占主导因素;在浓度较高时,配级尾砂和全尾砂沉降速度相差不大,此时主导因素为料浆浓度。  相似文献   

15.
Macroscopic and microscopic in-situ observation of particles and gas bubbles are used to get precise impressions of the hydrodynamical characteristics of a biologically active suspension. Moreover, values of in-situ velocities and particle densities can be gained by using these methods. The suspended anaerobic sludge revealed an extensive fibrous structure ('fur') on its surface. The observed microfibers have a profound influence on the settling/flotation behavior of the particles because they increase the effective particle volume, they may trap gas bubbles and they favor agglomeration. The biomass particles do not appear as single spherical objects but due to its fibrous structure on the outside as strongly interacting mass. The compressibility of the bubbles which are entrapped in the sludge agglomerates results in a pressure-dependent density of the sludge particles.  相似文献   

16.
Rabah FK  Dahab MF 《Water research》2004,38(19):4262-4270
Two laboratory-scale fluidized-bed biofilm reactors (FBBRs) were used to investigate the biomass concentration and the biofilm characteristics in a high-performance FBBR used for the denitrification of exceptionally high-nitrate wastewater (1000 mg N/L). Reported correlations by other workers for predicting the biomass concentration in FBBR were examined for their validity in comparison with the experimental results of this study and the best set of applicable correlations was recommended. The effects of the two main operational parameters, the superficial velocity and nitrogen loading rate on the biomass concentration in the FBBR were also studied. Correlations for the drag coefficient and the expansion index from the literature, together with the biofilm dry density correlation produced from this study were found to produce the best prediction of the FBBR biomass concentration compared to other reported correlations. The average biomass concentration in the FBBR decreased with the increase of the superficial velocity in the range of 45-65 m/h at all applied nitrogen loadings (i.e. 6, 8, 12 and 16 kg N/m3bedd).  相似文献   

17.
Helminth parasite eggs in low quality water represent main food safety and health hazards and are therefore important indicators used to determine whether such water can be used for irrigation. Through sedimentation helminth eggs accumulate in the sediment, however resuspension of deposited helminth eggs will lead to increased concentration of suspended eggs in the water. Our study aimed to determine the erodibility (erosion rate and erosion threshold) and settling velocity of Ascaris and Trichuris eggs as well as cohesive sediment at different time points after incorporation into the sediment. Cohesive sediment collected from a freshwater stream was used to prepare a sediment bed onto which helminth eggs were allowed to settle. The erodibility of both sediment and helminth eggs was found to decrease over time indicating that the eggs were incorporated into the surface material of the bed and that this material was stabilized through time. This interaction between eggs and bulk sediment was further manifested in an increased settling velocity of suspended eggs when sediment was present in the suspension as compared to a situation with settling in clean water. The incorporation into the sediment bed and the aggregation with sediment particles decrease the mobility of both helminth egg types. Our findings document that helminth eggs should not be viewed as single entities in water systems when modelling the distribution of eggs since both erodibility and settling velocity of eggs are determined by mobility of the sediment present in the water stream. Recalculation of the erosion threshold for helminth eggs and sediment showed that even at relatively low current velocities i.e. 0.07-0.12 m s−1 newly deposited eggs will be mobile in open irrigation channels. These environmental factors affecting resuspension must be taken into account when developing models for sedimentation of helminth eggs in different water systems.  相似文献   

18.
This study aimed to experimentally investigate and statistically test changes in the settling velocity of particles falling in an aqueous solution due to an orbital shaking of the container. A series of settling experiments were conducted on coal samples under different combinations of shaking speed and initial concentration of the particles. First, a generalized version of the factorial design (a split‐plot design) was utilized to obtain the acquired data. Then, an appropriate statistical model was fitted to experimental data using settling velocity as a response while shaking speed and initial coal concentration were defined as factors. Graphic patterns confirmed our hypotheses that settling velocity is affected by the shaking speed, initial coal concentration and the interaction of these two factors. Results of the analysis indicated that the main effects of both initial coal concentration (F‐statistic = 775.75) and shaking speed (F‐statistic = 11.96) on the settling velocity are strongly significant (both with a P‐value near zero). Moreover, a strong interaction of the effects of these factors on the response variable was also observed (F‐statistic is 10.57 with a P‐value of near zero). Based on the results, combination of 4% coal concentration and 50 rpm shaking speed resulted in the highest settling velocity of 1.21 cm/s. In contract, a combination of 10% coal concentration and 100 rpm shaking speed led to a settling velocity of only 0.55 cm/s. Findings of this study may have invaluable benefits to the mineral and water treatment industries where design and construction of thickeners and sedimentation tanks equipped with orbital shakers can significantly accelerate the sedimentation of mineral particles as well as water contaminants.  相似文献   

19.
A three‐dimensional atmospheric dispersion model of a heavy admixture emitted from an elevated continuous point source is presented. Appropriate boundary conditions have been employed to model the effects of various removal mechanisms like deposition, settling and leakage of pollutants. This model takes care of variation of mixing layer height with heat flux, geostrophic drag by terrain and several meteorological parameters. A realistic form of variable eddy diffusivity is used in this model for a stable atmospheric condition. It has been found that the effect of settling of large particles is to reduce pollutant concentration always far away (horizontally as well as vertically) from the source. Whereas, in the lower part of the boundary layer near the source its effect is to increase concentration for small values of settling velocity and to decrease for larger values. The present model, being three dimensional in nature, is more suitable to assess the impact of point source emission.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号