首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
依据空气动力学、流体力学和传热学等相关理论并结合矿山实例,利用Fluent模拟软件分别在单风筒、双风筒两种不同压入式通风方式下,对巷道内的温度场在多种送风风速、风温情况下的分布规律进行数值模拟研究。结果表明,双风筒压入式通风较单一压入式通风更优,并且距离掘进面较远部分的巷道低温区更广,风温低于28℃的区域占2/3;同时在掘进面附近,双风筒压入式要比单风筒压入式温度低1℃~2℃,风流分布更均匀;入口风速能影响巷道内温度场分布,当巷道风速超过0.5 m/s,其降温效果不再明显;掘进面的温度会随着入口风流温度的降低而逐渐下降,且两者呈很强相关性。  相似文献   

2.
基于独头巷道的特点和有限空间的受限贴附射流理论,建立了独头巷道压入式受限贴附射流通风降温的数学模型。采用Fluent软件对入风流在巷道内速度场的分布及在不同风速下巷道内的温度场的分布进行数值模拟。结果表明在风速为5m/s,送风温度为25 ℃时,较好的改善了巷道内的热环境。  相似文献   

3.
基于独头巷道的特点和有限空间的受限贴附射流理论,建立了独头巷道压入式受限贴附射流通风降温的数学模型。采用Fluent软件对入风流在巷道内速度场的分布及在不同风速下巷道内的温度场的分布进行数值模拟。结果表明在风速为5m/s,送风温度为25℃时,较好的改善了巷道内的热环境。  相似文献   

4.
针对某金属矿山井下深部独头作业面高温热害问题,以巷道实际的开拓设计建立几何模型,利用FLUENT软件模拟巷道内的温度场变化。模拟巷道采用压入式降温通风系统,通过改变模型中风筒送风风速和温度,探究通风降温参数与巷道温度的相互关系。并在现场进行试验,验证通风降温机组实际运行的效果。结果表明:送风距离一定时,如果风筒送风风速越高,则掘进巷道内环境温度越低,降温效果就越好;若采深较大且存在热涌水等放热量较大的局部热源,送风距离的增大会使风筒送入的冷风温度快速攀升;风筒选用可伸缩性材料,送风距离可调控,有利于在更低的经济成本下改善掘进面热环境。模拟和现场检测具有较好的一致性。  相似文献   

5.
:为解决矿井巷道高温环境危害,采用理论分析、数值模拟及现场应用效果分析等方法,研究高地温矿井温度场分布,同时模拟分析不同通风风速和通风温度对矿井环境温度的影响,并对喷雾降温效果进行分析,研究结果表明:提高通风风速能有效降低矿井环境温度,风筒出 口 速 度 为 4 m/s时,通风降温效果最好,通风速度v 与巷道内温度T 变化存在关系为T=300.79v-0.004(R2 =0.99);降低通风温度能够在增加通风风速的基础上进一步起到降低环境温度的效果,通风温度设置为288K 时,可以满足现场巷道掘进面处通风降温的要求;按照模拟确定出的最佳通风参数进行现场通风调整,监测发现巷道开挖面处的最大降温值可以达到10.16K,最高降温率为3.38%,采取通风及喷雾降温方式,可以确保距巷道掘进面5m 内的降温效果,有效缓解了高地温环境对作业人员的影响.  相似文献   

6.
为定量分析高温矿井入风风量、风温对采掘工作面、采掘巷道内部的降温效果,针对某矿山新区井下采场和掘进作业面环境温度高的实际情况,依据巷道风流流动特性、热力学、流体力学等基础理论,应用Gambit软件建立采、掘作业面的气固两相流的热力学模型,并应用Fluent和Tecplot软件对不同通风降温方案进行数值模拟分析,结果表明:两个专用进风天井偏采场中央布置时通风降温效果更好,风温分布更均匀;提高入风口风速,能够有效降低采场温度;当采场截面风速为0.25m/s时,采场通风进口风温保持在22℃,采场风流温度恰好可降至28℃。  相似文献   

7.
压入式局部通风掘进巷道内热环境数值模拟研究   总被引:1,自引:1,他引:0  
采用三维k-ε紊流模型,利用Fluent软件模拟了2种风筒送风方式下,压入式局部通风掘进工作面风流与巷道围岩的热交换过程,得到了掘进巷道内速度场、温度场以及人体热舒适指标(PMV~PPD)分布图.计算结果表明,边长为0.7m的风筒、风速6m/s和空气温度20℃的送风方式,较其它送风方式能为矿工提供更好的热舒适工作环境;在掘进巷道同一截面不同高度的温差小于3℃;在掘进巷道内人体活动区域预测平均投票数平均值低于0.5,预测不满意百分数平均值小于20%,靠近掘进巷道侧风速较大,人体有吹风感.在满足人体热舒适的条件下,采用较大直径送风筒和相对较低的送风速度的送风方式有利于气流组织对有害物质的稀释和排出.  相似文献   

8.
三山岛金矿随着开采深度不断增加,深部高温问题已严重影响矿山开采效率与安全.为分析、优化三山岛金矿深部通风降温系统,借助 ANSYS、Fluent等数值模拟软件,模拟计算矿井深部整体温度场和流场分布规律;针对-960m水平设计了多组通风系统改造方案,并进行模拟和分析比较.结果表明:自然通风条件下,掘进工作面温度及风速无法满足生产要求;采用压入式通风效果明显优于抽出式通风,采用压入 式 通 风 方 式 时,将 供 风 温 度 和 风 速 分 别 设 为21℃和20m/s,掘进工作面温度可降至23.94℃,风速提高至2.24m/s,能够满足安全生产要求.研究结果为三山岛金矿深部通风降温参数设置提供了参考.  相似文献   

9.
掘进巷道在地下矿山开采过程中尤为常见,由于掘进过程中无法及时形成完整的通风网络,致使掘进巷道及工作面热害较为严重。尽管矿山掘进面热害治理的研究很多,但有关不同高宽比的掘进巷道与通风降温关系的研究较少。在通风条件相同下,运用Fluent数值软件模拟分析,通过改变掘进巷道的高宽比来研究其温度场分布的不同。结果表明,在温度为35℃的高温掘进面巷道中,采用压入式通风方式,入口风温为22℃可满足通风降温的要求;在相同送风量情况下,掘进面巷道的高宽比越大,通风降温效果越好,但同一断面上纵向温差也越大;通过改进掘进巷道高宽比可实现通风降温最优化,从而为巷道设计者提供了新的理论依据。  相似文献   

10.
针对夏甸金矿深井通风降温问题,在该矿-682 m水平掘进巷道进行了通风降温试验,并运用Fluent数值模拟软件对试验巷道进行模拟,以此来研究通风降温过程中巷道内风流速度场与温度场的变化规律。试验结果表明,通风过程中,风量越大,降温效果越明显。Fluent模拟结果表明,通风过程中,风流在距掌子面20 m内会形成涡流,风流紊乱,而在距掌子面20 m外,风流则较为稳定;巷道内距掌子面越近,温度越低;受风流与岩壁热交换的影响,巷道断面的温度会呈现出四周高中间低的分布规律。对比试验数据与模拟结果,验证了Fluent数值模拟的准确性与可靠性,为解决夏甸金矿其他掘进巷道的通风降温问题提供了参考依据。  相似文献   

11.
随着矿山开采深度的不断增加,井下环境存在的高温高湿问题日益凸显,严重威胁工人职业健康和生产安全。为了探究井下热环境的分布及其影响因素,采取针对性的降温措施,基于VUMA-3D对某矿井进行了井下热环境模拟,研究了地温梯度、围岩传热系数、设备功率、入风风速和入风风温等不同因素对井下热环境的影响规律。研究结果表明:地温梯度每增加0.001℃/m,巷道内温度增大0.75℃左右;入风风速每增大0.2 m/s,巷道温度降低0.8℃,巷道内风速达到2.4 m/s后,巷道温度降低幅度变为0.34℃;入风温度以0.62℃的梯度递减,回风温度以平均0.4℃递减;增大风速和降低风温相结合的降温效果更好,但是降温效果对风流不畅的巷道有限,采用局部通风方法后,巷道温度从28.3℃降低到27.5℃以下,高温热害得到改善。  相似文献   

12.
针对高温深井矿山独头掘进作业温度高、通风难等问题,以海南山金抱伦金矿为原型,基于气固两相流理论,采用三维流体仿真软件模拟深井井下高温环境,根据不同通风参数下主运巷及独头巷道的温度场、速度场分布特征,研究风温、风速及岩温等对气流分布、温度分布特征影响规律。结果表明:独头巷道有效通风临界距离为7 m,巷道交接处会产生“8”字型涡流,涡流交错处断面平均温度达到最低值,超过7 m,需要采取局部通风措施改善作业环境;采用制冷设备进行降温时,制冷装置距离掘进作业点距离小于30 m,入口通风温度为20~25℃时较为适宜;对于高热巷道围岩覆盖一定厚度的保温材料,减少岩壁向气流中散热,可以有效降低巷道空气温度。研究结论可为高温深井矿山通风系统设计、局部制冷降温设计提供理论支撑。  相似文献   

13.
针对长距离掘进巷道仿真模型中长度与高度、宽度比例不协调的问题,选取永川煤矿掘进工作面及附近50 m巷道区域为研究对象,采用CFD软件对巷道风流流场及降温前后温度场的分布及变化进行了模拟分析,结果表明:掘进工作面及巷道内风流速度整体上以风筒出口为界分为高速风流区和低速风流区。高速区风流速度较大(5~10 m/s),流场结构复杂并且衰减明显;低速区风流速度较小(1 m/s左右),衰减变化不明显。掘进巷道及工作面温度受风筒出口风流温度影响较大,容易产生巷道里端冷、外端热的风流"回头热"现象。掘进工作面及巷道流场模拟结果与实际吻合程度较高,但温度场模拟结果与实际有一定的差距。  相似文献   

14.
选取夏甸金矿-682 m水平38#掘进巷道为研究对象,进行通风降温试验测定,并用Fluent软件对试验条件下掘进巷道的风流速度场和温度场分布进行数值模拟计算,验证了该模拟方法的可靠性。研究不同因素对巷道降温效果的影响,初步得出了井下掘进巷道风流温度与风量、入风温度以及岩壁温度的变化规律。掘进巷道通风降温影响因素的排序为入风温度>岩壁温度>风量。入风温度和岩壁温度的升高均会导致与巷道风流温度线性升高。通过增加风量来降低风流温度是有效的,但随着风量的增加,其降温效果会越来越不明显。  相似文献   

15.
《煤炭学报》2021,46(8)
建井期间平巷掘进工作面局部降温系统多采用非保温风筒长距离输送冷风的方法,输送距离可达600 m。由于距离长输送过程中的冷量损失占总制冷量的比重较大,是影响降温系统投资、设计、运行管理的关键因素。为解决该项冷量损失的计算问题,针对建井期间水平巷道的掘进与通风系统尚未贯通的特点,基于风筒内、外风流及风流与围岩间热能的输运与守恒关系,构建了风筒内、外风流温度场的微分方程组;并将巷道内随通风时长变化的不稳定换热系数解析为沿巷道长度变化的空间分布函数,通过数值计算得到了风筒内外温度场的分布及输送过程中的冷量损失。进一步结合工程案例现场实测的结果,分析了降温系统送风风筒入口风温、通风时间与送风距离、送风量等主要设计参数对风筒、内外风流温度场及输送冷量损失的影响。并通过理论计算对比了该案例在通风时长为0,30,90,120,150 d,送风量为300,330,360 m~3/min,送风入口风温为16,18,20℃时系统的运行特征,结果表明围岩与风流的不稳定换热系数随通风时长增加而减小,并在通风90 d左右后基本达到稳定;受不稳定换热系数变化的影响,风筒内风流的温度沿风流方向增加较为明显;风筒外的风流温度变化随通风时间的增长逐渐变得平缓;系统的冷量损失约为制冷量的5%~9%;送风温度每降低2℃,冷量损失平均增大约5%;冷量损失大小与送风距离呈线性正比关系;通风风量每增大10%,冷量损失减小约4.5%。  相似文献   

16.
何伟  李刚  周伟 《现代矿业》2022,(2):233-236
随着矿山开采深度的不断增加,矿井高温热害日趋严重,采用矿井通风系统无法从根本上解决热害问题.以某矿山深部掘进巷道工程热环境为研究对象,分析掘进巷道热源、矿井局部制冷降温原理,在此基础上研发出适合井下现场开拓掘进作业的局部制冷降温系统,并在该矿山-1000 m中段采掘工作面开展现场应用.结果表明:作业面的温度快速下降,降...  相似文献   

17.
《煤矿安全》2017,(12):179-182
基于计算流体动力学(CFD)和矿井通风理论,以田陈煤矿7309综掘工作面为研究对象,建立了单一压入式通风系统条件下的综掘工作面几何模型。采用FLUENT软件对不同供风速度下综掘工作面三维空间内风流场、温度场及湿度场的分布特性及变化规律进行数值模拟。模拟结果表明:增加供风量对降低巷道温度有一定的作用,但对巷道内的湿度影响较小,当压风筒出口风速为16 m/s、风量为480 m3/min时,综掘巷道内的温度低于26℃,综掘机附近工作区域相对湿度保持在40%~57%之间,此时的供风参数满足煤矿安全规程要求。  相似文献   

18.
掘进巷道混合式通风数值模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
依据气固两相流理论,以某金属矿掘进巷道内前压后抽混合式通风系统为研究对象,运用FLUENT软件对掘进巷道内爆破粉尘在混合式通风流场下的浓度分布进行数值模拟。通过改变混合式通风参数(压、抽风筒口与迎头面之间的距离、压抽风量配比),在不同的通风工况下通风15min后,分析比较巷道内的粉尘浓度分布,从而确定混合式通风最佳的通风参数。研究结果表明,压抽风筒距离迎头面太近或太远都不利于通风排尘,对于该矿巷道,当压风筒出风口与迎头之距L压=8~10m,抽风筒吸风口与迎头之距L抽=30~35m,压抽风量配比为1∶1.3时,通风除尘效果较好。  相似文献   

19.
为了研究深部矿井煤岩体注水对巷道温度场的影响,采用每隔3~5m设置一个注水口、低流量中压缓慢注水的方法对煤岩体实施注水降温。建立巷道壁面与巷道环境之间的热湿交换模型,利用Fluent软件进行数值求解,获得了深部矿井煤岩体注水时温度场分布。结果表明:巷道内温度场呈阶梯分布,在采用注水降温时越往深处环境的温度越低;含湿量是影响巷道温度变化的主要因素;当注水口靠近巷道分布、注水间距为5m且注水速度为1.1m/s时,巷道降温效果最好,巷道环境温度约降低2℃。  相似文献   

20.
为直观地了解抽出式通风风流运动规律,建立物理模型,设置边界条件对抽出式通风条件下巷道风流运动及粉尘运移规律进行了数值模拟,分别研究了X,Y,Z方向的速度、压力分布规律和不同粒径粉尘运移轨迹,结果表明:巷道内风速0.54m/s,较为稳定,风筒内风速较大,为23m/s左右,这与实际情况非常吻合,在截面X=5.2m处巷道内的风流方向朝向掘进头,风筒内的风流方向则由风筒入口朝向出口。巷道内的风速在整个模拟区段内几乎保持恒定,没有较大变化,而风筒内的风速则变化较大,在入口处最大,达40m/s,之后逐渐减小,然后稳定在23m/s左右。整个巷道均为正压,风筒内是负压,在这两股压力的共同作用下形成稳定的通风风流,风筒入口处负压最大,而后负压逐渐减小,但很快就维持在比较稳定的状态。抽出式通风时粉尘扩散较少,掘进面产生的粉尘全部都被吸入负压风筒,抽出式通风时更有利于控制巷道中特别是司机位的粉尘含量,保护司机等掘进机周围工人的身体健康。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号