首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of rigid inclusions in a powder compact leads to a reduction in the densification rate of the compact and may also lead to processing defects. In this paper, the densification rate and the constitutive parameters of both homogeneous YBa2Cu3O6+ x and composite powder compacts (YBa2Cu3O6+ x powder with 10 vol% dense inclusions of YBa2Cu3O6+ x ) are reported. A small amount of liquid phase, which formed during sintering, was present in the samples. However, even with the presence of a liquid phase, the addition of inclusions still reduces the densification rate of the composite and increases its viscosity. The results have been compared with a published analysis of the problem using measured values of the constitutive parameters. Both the viscosity and viscous Poisson's ratio of the porous body have been measured.  相似文献   

2.
The present work describes a new technique to synthesize aligned YBa2Cu3O7- x and Ag─YBa2Cu3O7- x superconducting composites from Ba- and Cu-deficient compositions (relative to YBa2Cu3O7- x ) plus BaCuO2. For YBa2Cu3O7- x , high transition temperature midpoint Tc (91 K), temperature of zero resistivity T 0 (90 K), and critical current density Jc (>3000 A°Cm−2 at 77 K) were achieved by using this technique. This procedure provides the potential for using a reliable and reproducible densification and alignment technique alternative to partial or full melting. The composite is highly aligned, with an average grain size of ∼1 to 2 mm and domains of width greater than 5 mm. The initial phase assemblage consists of YBa2Cu3O7- x (123) as the major phase plus YBa2CuO5 (211) CuO as minor phases. The BaCuO2 is added to the Ba- and Cu-deficient starting composition in order to assist in the formation of a CuO-rich liquid as well as to compensate for the Ba and Cu deficiences in 123. Since the liquid forms at ∼900°C and is compatible with 123, it can be used to facilitate alignment of 123 at ∼930°C. The addition of Ag to the system results in eutectic formation with the (solidified) liquid, substantial filling of the pores during sintering, and improved alignment.  相似文献   

3.
The sintering behavior of two types of heterogeneous compacts of YBa2Cu3O6+ x was studied: (1) Soft agglomerates present in the starting powder were used to study the effect of rapidly densifying inclusions on the overall sample densification. In this case, the induced stresses caused severe cracklike damage in the sintered microstructure. (2) On the other hand, when nondensifying inclusions (same composition) were incorporated into the starting powder, no sintering damage was observed. Further, there was no retardation of densification or coarsening due to the presence of these dense inclusions, over a wide range of inclusion size. Several possibilities for this behavior are discussed, based on the distribution of stresses induced by differential sintering rates.  相似文献   

4.
The relationships between the microstructure of sintered YBa2Cu3O6+ x superconductors and processing variables (sintering time, sintering temperature, and oxygen partial pressure) were examined. Large-grained microstructures were obtained in 100 kPa oxygen sintering atmospheres, while fine-grained microstructures were obtained in 2 kPa oxygen. The formation of liquid phases below the peritectic decomposition temperature of YBa2Cu3O6+ x was found to have an effect on both the microstructure (as observed by optical and transmission electron microscopy) and the transport critical current density ( Jc ). The critical current density was found to be highest for sintering below the lowest invariant point, which is a function of the oxygen partial pressure. However, over the range of conditions examined here, there does not appear to be any correlation between microstructural features, such as average grain size and aspect ratio, and the transport Jc .  相似文献   

5.
The thermodynamic data for the Y2O3–BaO–Cu2O–CuO quaternary system were optimized from measured thermodynamic data. A two-sublattice model for ionic solution was used to express the Gibbs free energy of the liquid phase, and a two-sublattice regular solution model was used for the nonstoichiometric YBa2Cu3O6+δ superconducting compound. The optimized thermodynamic data were used to calculate the phase diagrams of the Cu2O–CuO binary system and the CuO x –Y2Cu2O5 and CuO x –BaCuO2 quasi-binary systems. The results were in good agreement with reported measured data. The liquidus projection and isothermal and vertical sections of the Y2O3–BaO-CuO x quasi-ternary system were calculated. The effect of oxygen pressure on some reaction temperatures was predicted by calculating them at various oxygen pressures, and the oxygen contents (6 +δ) in YBa2Cu3O6+δ were calculated at various temperatures and oxygen pressures. The results were compared with experimental data.  相似文献   

6.
Samples of nearly theoretical density are produced by post hot isostatic pressing (post-HIP) of presintered YBa2Cu3O7-x using argon as the pressure medium. The hot isostatically pressed samples show improved values for critical current density at 77 K. Experimental aspects of post-HIP are described, and microstructural development of YBa2Cu3O7-x during sintering and post-HIP is discussed.  相似文献   

7.
In situ annealing studies of YBa2Cu3O6+x performed in an optical hot stage revealed that, at temperatures ∧450°, localized melting occurred. On subsequent cooling, a discrete second phase was observed at the YBa2Cu3O6+x grain boundaries. Quantitative chemical analysis using X-ray wavelength dispersive spectroscopy indicated that the second phase was composed of a barium oxycarbonate. The source of the carbon in the second phase was identified to be CO2 in the atmosphere.  相似文献   

8.
The microstructure of partial-melt-processed YBa2Cu3O x /HfO2 has been studied by transmission electron microscopy. A characteristic spherulitic microstructure is formed in the system. A model for the growth mechanism has been proposed. The critical heterogeneous nucleation of the YBa2Cu3O x phase appears to occur from the melt in an epitaxially controlled manner on CuO particles. Subsequent growth of YBa2Cu3O x platelets from the nucleus region is repeatedly interrupted by the nucleation of hafnium-rich phases in the liquid at the solid/liquid interface in a manner that again appears to be epitaxially controlled and that promotes the splay of the c orientation of the YBaCuO grain.  相似文献   

9.
Concurrent thermogravimetry (TG) and evolved-gas analysis (EGA) were done for YBa2Cu3O7-z and LaBa2Cu3-O7-z superconductors. The sample weights were monitored by thermobalance and the evolved O2 and CO2 species were monitored by quadruple mass spectrometer (QMS). No diffraction peak for the impurity phase containing a carbonate group was observed in the X-ray diffraction patterns for these samples, but the release of CO2 was detected by EGA. CO2 gas began to evolve from YBa2Cu3O7-z at 543°C and from LaBa2Cu3O7-z at 692°C. Preparation of high-quality YBa2Cu3O7-z and LaBa2Cu3O7-z superconductors is discussed on the basis of results of these thermal analyses.  相似文献   

10.
Solid-state sintering was used to make YBa2Cu3O7−δ superconducting bulk materials. Corrosion of the YBa2Cu3O7−δ superconductor material was investigated in a humid environment. The superconducting materials exhibited significant corrosion after 4 h at 80° and 100% relative humidity. A grain-boundary phase was formed, and the percent superconducting phase in the material decreased by approximately 60%. The transition temperature (Tc) decreased with corrosion time. After 2 h of corrosion, Tc decreased from 87 to 81 K.  相似文献   

11.
The oxygen content (6 +δ) in YBa2Cu3O6+δ varies with temperature and oxygen partial pressure. An equation for the content as a function of temperature and oxygen partial pressure has been obtained based on the two-sublattice model of YBa2Cu3O6( V 0, O)1. The results calculated using the equation are in very good agreement with published measured data.  相似文献   

12.
The preparation of YBa2Cu3O7 - δ-based ceramics was made from a mixture of oxides taken in the molar proportions α:1:2 BaCuO2:Y2BaCuO5:CuO(0.95 α 3). The densification of the ceramics is strongly dependent on the initial amount of BaCuO2. The highest density is obtained when α= 1. All the ceramics present a superconducting transition. A sintering mechanism is proposed in which the densification is mainly governed by the appearance of a metastable BaCuO2-based liquid at around 900°C.  相似文献   

13.
Hot isostatic pressing of the high-Tc superconductor YBa2Cu3O7−δ can lead to loss of oxygen and transformation of the material from the high-Tc orthorhombic phase to the nonsuperconducting tetragonal phase. It is shown that glass encapsulation helps retain the orthorhombic structure, whereas steel encapsulation resulted in formation of the tetragonal phase. Reasons for this phenomenon are discussed. The equilibrium oxygen gas pressure for the oxygen decomposition reaction in YBa2Cu3O7, however, prevents full densification of this material in glass when employing hot isostatic pressing conditions of 200 MPa and 845°C.  相似文献   

14.
Hot isostatic pressing (HIP) can be used to produce fully dense shapes of high-temperature ceramic superconductors. Densification modeling of monolithic YBa2Cu3O7-δ and the composite YBa2Cu3O7-δ/Ag systems allows an understanding of the HIP process and has led to the development of successful protocols for HIP of these materials. Ag metal is the best encapsulation material found for both systems. HIP of monolithic YBa2Cu3O7-δ requires a slow ramp of pressure in order to prevent decomposition into more basic oxides such as Y2BaCuO5 and CuO. HIP of composite YBa2Cu3O7-δ/Ag requires careful powder processing to obtain dense material with a fine dispersion of Ag.  相似文献   

15.
The effect of oxygen partial pressure, ranging from 0.001 to 1.0 atm, and temperature, in the range of 930°–955°C, on the solid-state sintering kinetics of the superconducting ceramic YBa2Cu3O7-δ has been studied. Isothermal compaction rates between 930° and 955°C reached a maximum at some critical PO2 (PO2CRIT), with decreasing rates both above and below this oxygen partial pressure. This behavior was not observed for YBa2Cu3O7-δ sintered at 960°C, when a liquid phase is present. The activation energy for sintering above PO2CRIT has been estimated to be ∼190 kJ/mol, whereas below PO2CRIT it was found to be ∼130 kJ/mol. The oxygen ion diffusion was considered to be the rate-determining step above PO2CRIT, while it is hypothesized that lattice strain caused by the formation of oxygen ion vacancies below PO2CRIT affected the rate of sintering.  相似文献   

16.
The (YBa2Cu3)1−xNaxO7–δ system in the range of x = 0–0.8 was investigated. Experimental data suggest that the sodium doping with x 0.26 does not affect the critical transition temperature Tc, and the crystal structure maintains the orthorhombic lattice with a slightly smaller unit cell. However, sodium doping increases the sintering and grain growth kinetics, resulting in a higher superconducting phase volume and an enhanced Meissner effect. It also lowers the processing temperaturel. The experimental data also suggest that the sodium atoms diffuse into the superconducting YBa2Cu3O7−δ crystallites, which stabilizes the orthorhombic phase. The transition temperature (ortho-rhombic to tetragonal) in sodium-doped materials increases with the increasing concentration of sodium.  相似文献   

17.
Fine, homogeneous, dual-phase Ag–YBa2Cu3O7– x composite powders were prepared by a simple colloidal sol–gel coprecipitation technique that was previously used for synthesis of single-phase YBa2Cu3O7– x . Samples containing up to 60 wt% silver were synthesized. Silver neither reacted with nor degraded the YBa2Cu3O7– x . The presence of silver was found to aid the oxygenation of the precursor during calcination to form orthorhombic YBa2Cu3O7– x . Measurements made by ac magnetic susceptibility showed no significant degradation in transition temperature for samples containing up to 40 wt% silver.  相似文献   

18.
A new group of complex perovskites Ba2REHfO5.5 (where RE = La, Pr, Nd, and Eu) has been synthesized and sintered as single-phase materials with high sintered density and stability using a solid-state reaction method for the first time. The structure of Ba2REHfO5.5 has been studied by X-ray diffactometry (XRD) and all of the perovskites are isostructural and have a cubic structure. The dielectric constant and loss factor values of these materials are in a range suitable for their use as substrates for YBa2Cu3O7-delta superconductors. XRD and resistivity measurements show that there is no detectable reaction between YBa2Cu3O7-delta and Ba2REHfO5.5, even when the two substances are mixed thoroughly and sintered at 950°C for 15 h. The addition of Ba2REHfO5.5 up to 20 vol% in YBa2Cu3O7-delta-Ba2REHfO5.5 composite shows no detrimental effect on the superconducting transition temperature of YBa2Cu3O7-delta. Thick films of YBa2Cu3O7-delta fabricated on polycrystalline Ba2REHfO5.5 substrate have a superconducting zero resistivity transition of 92 K, indicating the suitability of these new materials as substrates for YBa2Cu3O7-delta films.  相似文献   

19.
The influences of the Nb/Co ratio on electrical properties, densification behavior, and microstructural evolution were investigated on ceramics in the ternary system BaTiO3-Nb2O5-Co3O4. Temperature-stable dielectrics were obtained using either a large amount of Nb + Co or a large Nb/Co ratio. The sintering characteristics and electrical properties were studied for the niobium-rich composition (Nb/Co = 3.00; Comp.N) and the cobalt-rich composition (Nb/Co = 1.67; Comp.C) with the same Nb + Co amount of 2 at.%. The temperature characteristic of the dielectric constant was flat, irrespective of the firing temperature, for Comp.N, whereas it was dependent largely on the firing temperature for Comp.C. The grains did not grow in Comp.N but grew in Comp.C. The reaction of Nb2O5 and Co3O4 with BaTiO3 yielded secondary phases: Ba6Ti17O40 phase for Comp.N, and a barium-poor, titanium-rich, and cobalt-rich phase for Comp.C. These secondary phases formed a liquid phase during firing. Comp.N contained a larger amount of the secondary phase than Comp.C. It was concluded that the liquid phase contributed little to densification and microstructural evolution in the system BaTiO3-Nb2O5-Co3O4.  相似文献   

20.
Preparation of dense and phase-pure Ba2Ti9O20 is generally difficult using solid-state reaction, since there are several thermodynamically stable compounds in the vicinity of the desired composition and a curvature of Ba2Ti9O20 equilibrium phase boundary in the BaO–TiO2 system at high temperatures. In this study, the effects of B2O3 on the densification, microstructural evolution, and phase stability of Ba2Ti9O20 were investigated. It was found that the densification of Ba2Ti9O20 sintered with B2O3 was promoted by the transient liquid phase formed at 840°C. At sintering temperatures higher than 1100°C, the solid-state sintering became dominant because of the evaporation of B2O3. With the addition of 5 wt% B2O3, the ceramic yielded a pure Ba2Ti9O20 phase at sintering temperatures as low as 900°C, without any solid solution additive such as SnO2 or ZrO2. The facilities of B2O3 addition to the stability of Ba2Ti9O20 are apparently due to the eutectic liquid phase which accelerates the migration of reactant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号