首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The methods to predict and prevent the formation of hard and soft zones in dissimilar weldments of 9Cr-1Mo and 2¼Cr-1Mo ferritic steels during high-temperature exposure are examined in this article. The computational studies have been carried out using multicomponent diffusion model incorporated in Dictra and validated by experimental methods using EPMA and TEM. Carbon concentration profiles across the interface of the weld joint between the two ferritic steels were simulated in the temperatures ranging from 823 K to 1023 K (from 550 °C to 750 °C) for various time durations using “diffusion in dispersed phase model” in Dictra. When precipitation and diffusion were incorporated into the calculations simultaneously, the agreement was better between the calculated and the experimentally measured values of carbon concentration profiles, type, and volume fractions of carbides in the hard zone and diffusion zone, width, and the activation energy. Calculation results of thermodynamic potentials of carbon in 2¼Cr-1Mo and 9Cr-1Mo steels suggested that the diffusion is driven by the activity gradient of carbon across the joint. The effectiveness of nickel-based diffusion barrier in suppressing the formation of hard and soft zones is demonstrated using calculations based on the cell model incorporated in Dictra.  相似文献   

2.
Heat-resistant 9 Cr steels with 1, 2, and 3 pct Mo were tested for mechanical properties, weldability, and creep-rupture properties. The elevated-temperature and rupture strengths increase with increasing molybdenum content. While the 9 Cr-1 Mo steel is martensitic and is precipitation strengthened with carbides, the 9 Cr-2 Mo and 9 Cr-3 Mo steels receive added benefits from precipitation of Laves phase and solid-solution strengthening. The latter cause little decrease in ductility and impact resistance. The 9 Cr-2 Mo and 9 Cr-3 Mo steels are characterized by a duplex microstructure which aids weldability. Weld cracking tests show no need for preheating the latter steels, although the martensitic 9 Cr-1 Mo steel is known to be susceptible to weld cracking if not preheated. Both duplex-structure steels have good resistance to stress-relief cracking. Anisotropy of mechanical properties, due to the orientation of the duplex structure in the rolling direction, is less than that observed in the fully martensitic 9 Cr-1 Mo steel.  相似文献   

3.
4.
The rates of decarburization of low alloy and plain carbon steels in static, isothermal sodium have been measured over the temperature range 1000° to 1300°F. Low alloy steels studies in these tests were 2-1/4 Cr-1 Mo (T22), 2-1/4 Cr-1Mo-1Nb,and 2-1/4 Cr-1Mo-low carbon (0.015 C). Plain carbon steels studied were 1020, 1040, and 1095. Periodic measurements of the specific carbon loss (mass of carbon lost per unit surface area of specimen) revealed that the decarburization of normal 2-1/4 Cr-1 Mo steel is controlled by diffusivity and solubility of carbon in the matrix. Decarburization rate constants measured in this study for the normal 2-1/4 Cr-1 Mo steel were found to be in good agreement with rate constants calculated from data reported in previous studies. Tests of modified 2-1/4 Cr-1 Mo steels showed that: a) the carbon content of the niobium-stabilized steelwill either remain unchanged or will increase and b) the low carbon steel will decarburize slightly during exposures in the same sodium systems which produce rapid decarburization of the steel with normal amounts of carbon. Decarburization tests on plain carbon steels revealed that both the depths of the decarburized layer and the specific carbon losses were controlled by diffusivity and solubility in the matrix. Comparison of the measured decarburization rate constants with theoreticalvalues (based on a moving-boundary diffusion process) were in good agreement. These data were used to calculate the carbon content at the surfaces of the steels during decarburization in the liquid and vapor phases of a sodium system. It was demonstrated that plain carbon steels can serve as carbon monitors for sodium systems.  相似文献   

5.
Analysis of isothermal grain growth kinetics of nanocrystalline Fe-9Cr-1Mo and Fe-9Cr-1W-based ferritic oxide dispersion strengthened alloys is reported. Fe-9Cr-1Mo-0.25Ti-0.5Y2O3 alloy exhibited ~900 and ~250 pct enhancement in grain-coarsening resistance at 1073 K (800 °C) in comparison with Fe-9Cr-1Mo-0.5Y2O3 alloy and Fe-9Cr-1W-0.5Y2O3 alloy, respectively. Comparison of grain growth time exponents also revealed that addition of Ti and Y2O3 to nanocrystalline Fe-9Cr alloy has significantly enhanced the grain growth resistance. This is attributed to the possible presence of Y-Ti-O-based nanoclusters (<5 nm).  相似文献   

6.
7.
Evaluations of creep rupture properties of dissimilar weld joints of 2.25Cr-1Mo, 9Cr-1Mo, and 9Cr-1MoVNb steels with Alloy 800 at 823 K were carried out. The joints were fabricated by a fusion welding process employing an INCONEL 182 weld electrode. All the joints displayed lower creep rupture strength than their respective ferritic steel base metals, and the strength reduction was greater in the 2.25Cr-1Mo steel joint and less in the 9Cr-1Mo steel joint. Failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of the heat-affected zone (HAZ) of the ferritic steel (type IV cracking) with the decrease in stress. At still lower stresses, the failure in the joints occurred at the ferritic/austenitic weld interface. The stress-life variation of the joints showed two-slope behavior and the slope change coincided with the occurrence of ferritic/austenitic weld interface cracking. Preferential creep cavitation in the soft intercritical HAZ induced type IV failure, whereas creep cavitation at the interfacial particles induced ferritic/austenitic weld interface cracking. Micromechanisms of the type IV failure and the ferritic/austenitic interface cracking in the dissimilar weld joint of the ferritic steels and relative cracking susceptibility of the joints are discussed based on microstructural investigation, mechanical testing, and finite element analysis (FEA) of the stress state across the joint.  相似文献   

8.
Nine experimental delta-ferritic steels have been examined as potential low expansion heat-resistant steels for use in fossil fuel power generation, nuclear power generation, nuclear process heat plants and coal gasification plants. The steels contain 10 to 14 pct Cr and 2 to 6 pct Mo, with additions of columbium, titanium, vanadium, aluminum and boron. Room-temperature tensile properties and oxidation resistance of all steels were determined. Selected steels were aged for 1000 h at 760 °C (1400 °F) and subjected to elevated temperature tensile tests at the aging temperature. Creep-rupture properties of selected steels were determined at 760 and 815 °C (1400 and 1500 °F). Extensive metallographic and phase identification studies were conducted. Of the two steels tested for creep-rupture strength, the 10Cr-6Mo-0.5Cb steel, with good room-temperature ductility, has rupture strength exceeding that of martensitic 12Cr-1Mo-V steel. The 14Cr-3Mo-0.5Cb-lTi-2Al steel exhibits an even higher rupture strength, but has only marginal ductility at room temperature.  相似文献   

9.
The tempering behavior of simulated coarse-grained (CG) heat-affected zones (HAZs) in two ferritic alloy steels, 2.25Cr-1Mo and HCM2S, was investigated. The hardness of HCM2S was found to be stable at longer times and higher temperatures than the 2.25Cr-1Mo steel, even though the “as-welded” hardnesses were approximately equal. Both materials reached a peak secondary hardness after tempering for 5 hours at 575 °C. The increase in hardness of the 2.25Cr-1Mo steel was due to precipitation of Fe-rich M3C carbides within the prior-austenite grains, whereas the secondary hardening in HCM2S was due to a fine dispersion of intragranular, W-rich carbides. The HCM2S steel retained its hardness at longer times and higher temperatures than 2.25Cr-1Mo steel, because of the precipitation of intragranular, W-rich carbides and V-rich MC carbides that stabilized the lath structure. This study shows that HCM2S should not be heat treated in the same way as 2.25Cr-1Mo steel and also provides a basis for defining the postweld heat treatment (PWHT) of HCM2S.  相似文献   

10.
The 885odgF (475°C) embrittlement of seven heats of chromium steels was investigated: four vacuum-melted heats with C + N < 0.008 pct and 14 pct Cr, 14 pet Cr-2 pet Mo, 18 pct Cr, or 18 pet Cr-2 pet Mo, and three air-melted heats with C + N > 0.09 pet and 18 pet Cr, 18 pct Cr-2 pet Mo, or 18 pet Cr-2 pet Mo-0.5 pct Ti. The steels were heated at 600° (316°), 700° (371°), 800° (427°), 900° (482°), and 1000°F (538°C) for various times up to 4800 h and the influence of this aging was investigated by hardness measurements, impact tests, and electron metallography. It was demonstrated that the embrittlement due to 885°F (475°C) exposure was caused by precipitation of a chromium-rich α phase on dislocations. The nucleation rate of α was calculated with the aid of Becker’s theory and the results were used to extrapolate experimental data obtained in this study. After an exposure of about 1000 h at 1000°F (538°C), a decrease in room temperature toughness was observed for all steels investigated. The decrease in toughness was not caused by immobilization of dislocations by α, but by precipitation of carbonitrides.  相似文献   

11.
《粉末冶金学》2013,56(5):420-426
Abstract

The densification and sintering behaviour of a cryomilled copper powder (grain size of 17±2 nm and dislocation density of 6·26±0·04×1016 m?2) were investigated and compared to those of an atomised copper powder with the same mean particle size in order to highlight the effect of the nanostructure on spark plasma sintering (SPS). Oxygen and nitrogen contamination of the cryomilled powder gives rise to extensive degassing during SPS up to 400°C. The cryomilled powder is more resistant to plastic deformation than the atomised one, but the huge density of dislocations and grain boundary activates sintering at low temperature. Densification is therefore promoted by deformation in the atomised powder and by sintering shrinkage in the cryomilled one. As a consequence, in the SPS conditions investigated, the atomised specimen is densified but not sintered, while the cryomilled one is effectively sintered and consequently densified.  相似文献   

12.
The new ferritic heat-resisting steels of 0.05C-10Cr-2Mo-0.10V-0.05Nb (Cb) composition with high creep rupture strength and good ductility have already been reported. The optimum amounts of V and Nb that can be added to the 0.05C-10Cr-2Mo steels and their effects on the creep rupture strength and microstructure of the steels have been studied in this experiment. The optimum amounts of V and Nb are about 0.10 pct V and 0.05 pct Nb at 600 °C for 10,000 h, but shift to 0.18 pct V and 0.05 pct Nb at 650 °C. Nb-bearing steels are preferred to other grades on the short-time side, because NbC precipitation during initial tempering stages delays recovery of martensite. On the long-time side, however, V-bearing steels have higher creep rupture strength. By adding V to the steels, electron microscopic examination reveals a stable microstructure, retardation during creep of the softening of tempered martensite, fine and uniform distribution of precipitates, and promotion of the precipitation of Fe2Mo.  相似文献   

13.
We report a W-rich alloy (W-7Cr-9Fe, at. pct) produced by high-energy ball milling, with alloying additions that both lower the densification temperature and retard grain growth. The alloy’s consolidation behavior and the resultant compacts’ microstructure and mechanical properties are explored. Under one condition, a 98 pct dense compact with a mean grain size of 130 nm was achieved, and exhibited a hardness of 13.5 GPa, a dynamic uniaxial yield strength of 4.14 GPa in Kolsky bar experiments, and signs of structural shear localization during deformation.  相似文献   

14.
A series of six Cr-, Cr + Mo-, Cr + Mo + V cold work cast tool steels were produced and investigated for microstructure, impact toughness and both experimental and industrial abrasive wear. Grain refinement of the steel matrix even in as-cast condition was obtained on using 2.3 % Mo + 0.9 % V and that ensured increasing impact toughness and abrasion resistance. An optimum impact toughness of about 85 J-cm?2 was obtained in air quenched (970°C) and tempered (450°C) Mo + V containing steels in which area fraction of carbides reached 38 %. The abrasion resistance improved in case of steels tempered at 250°C and had fine grain structure.  相似文献   

15.
The purpose of the current study is to develop austenitic nickel-free stainless steels with lower chromium content and higher manganese and nitrogen contents. In order to prevent nickel-induced skin allergy, cobalt, manganese, and nitrogen were used to substitute nickel in the designed steel. Our results demonstrated that manganese content greater than 14 wt pct results in a structure that is in full austenite phase. The manganese content appears to increase the solubility of nitrogen; however, a lower corrosion potential was found in steel with high manganese content. Molybdenum appears to be able to increase the pitting potential. The effects of Cr, Mn, Mo, and N on corrosion behavior of Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were evaluated with potentiodynamic tests and XPS surface analysis. The results reveal that anodic current and pits formation of the Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were smaller than those of lower manganese and nitrogen content stainless steel.  相似文献   

16.
Detailed analysis on tensile true stress (??)-true plastic strain (??) and work-hardening behavior of 9Cr-1Mo steel have been performed in the framework of the Voce relationship and Kocks-Mecking approach for wide range of temperatures, 300 K to 873 K (27 °C to 600 °C) and strain rates (6.33 × 10?5 to 6.33 × 10?3 s?1). At all test conditions, ??-?? data were adequately described by the Voce equation. 9Cr-1Mo steel exhibited two-stage work-hardening behavior characterized by a rapid decrease in instantaneous work-hardening rate (?? = d??/d??) with stress at low stresses (transient stage) followed by a gradual decrease in ?? at high stresses (stage III). The variations of work-hardening parameters and ??-?? as a function of temperature and strain rate exhibited three distinct temperature regimes. Both work-hardening parameters and ??-?? displayed signatures of dynamic strain aging at intermediate temperatures and dominance of dynamic recovery at high temperatures. Excellent correlations have been obtained between work-hardening parameters evaluated using the Voce relationship and the respective tensile properties. A comparison of work-hardening parameters obtained using the Voce equation and Kocks-Mecking approach suggested an analogy between the two for the steel.  相似文献   

17.
This paper presents results from a multi-frequency electromagnetic sensor used to evaluate the microstructural changes in 9Cr-1Mo and 2.25Cr-1Mo power generation steels after tempering and elevated temperature service exposure. Electromagnetic sensors detect microstructural changes in steels due to changes in the relative permeability and resistivity. It was found that the low frequency inductance value is particularly sensitive to the different relative permeability values of both steels in the different microstructural conditions. The changes in relative permeability have been quantitatively correlated with the microstructural changes due to tempering and long-term thermal exposure, in particular to changes in martensitic/bainitic lath size and number density of carbide precipitates that determine the mean free path to reversible domain wall motion. The role of these microstructural features on pinning of magnetic domain wall motion is discussed.  相似文献   

18.
When dissimilar weldments between 9Cr-1Mo and 2¼Cr-1Mo ferritic steels are exposed to high temperature, microstructural and microchemical modifications are observed near the weld interface. Diffusion of carbon driven by the activity gradient from low Cr to high Cr steel leads to the formation of carbon enriched ‘hard’ zone and carbon depleted ‘soft’ zone near the fusion joint. The present paper deals with the measurement of carbon diffusion profiles and the evaluation of concentration dependent diffusion coefficients of carbon across the interface at a temperature of 1023 K. Accurate carbon concentration profiles are generated using carbon calibration graph. The profiles are smoothened to reduce the experimental scatter and the concentration dependant diffusion coefficients are determined using Den Broeder’s method. In the base materials, where the concentration gradient is extremely small, D(c) values are determined using Hall’s method. Variation in D(c) across the weld interface is understood based on the microstructural and microchemical changes that take place during heat treatment.  相似文献   

19.
The influence of operating temperature on in-service degradation of mechanical properties of high temperature stream turbine components has been investigated. Material samples for this study were taken from a Cr-Mo-V rotor and several 2.25Cr-1Mo cast steel components which had operated over 200,000 hours. The test results revealed that the degree of in-service degradation of strength, toughness, and the fracture appearance transition temperature of both steels were very sensitive to the service temperature. Both steels softened only when they were exposed at a temperature greater than 454°C (850°F) and the degree of softening increased with further increase in service temperature. In Cr-Mo-V steel, the loss in strength was accompanied by an improvement in ductility and toughness. Despite softening of 2.25Cr-1Mo steel in service, elevated temperature exposure resulted in a marked decrease in ductility and toughness. The loss of toughness in this steel was in part irreversible. In contrast, a severe increase in fracture appearance transition temperature, due to reversible temper embrittlement, occurred in both steels at a service temperature of around 427°C (800°F), but not at the highest service temperature. In fact, the Cr-Mo-V steel did not temper embrittle as a result of service exposure at the highest operating temperature investigated. These results are rationalized in terms of changes in microstructure and grain boundary chemistry that occur in service as a function of operating temperature.  相似文献   

20.
Transition joints between ferritic steel and austenitic stainless steel are commonly encountered in high-temperature components of power plants. Service failures in these are known to occur as a result, mainly, of thermal stresses due to expansion coefficient differentials. In order to mitigate the problem, a trimetallic configuration involving an intermediate piece of a material such as Alloy 800 between the ferritic and austenitic steels has been suggested. In our work, modified 9Cr-1Mo steel and 316LN stainless steel are used as the ferritic and austenitic components and the thermal behavior of the joints between modified 9Cr-1Mo steel and Alloy 800 is described in this article. The joints, made using the nickel-base filler material INCONEL 82/182 (INCONEL 82 for the root pass by gas-tungsten arc welding and INCONEL 182 for the filler passes by shielded-metal arc welding), were aged at 625 °C for periods up to 5000 hours. The microstructural changes occurring in the weld metal as well as at the interfaces with the two parent materials are characterized in detail. Results of across-the-weld hardness surveys and cross-weld tension tests and weld metal Charpy impact tests are correlated with the structural changes observed. Principally, the results show that (1) the tendency for carbon to diffuse from the ferritic steel into the weld metal is much less pronounced than when 2.25Cr-1Mo steel is used as the ferritic part; and (2) intermetallic precipitation occurs in the weld metal for aging durations longer than 2000 hours, but the weld metal toughness still remains adequate in terms of the relevant specification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号