首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Few data regarding early developmental changes in cerebral (blood-to-brain) glucose transport (CTXglc) and CMRglc are available for humans. We measured CBF, CTXglc, and CMRglc with positron emission tomography at 4 to 7 days of life in six preterm human infants whose estimated gestational age was 25 to 34 weeks. The Michaelis-Menten constants Kt and Tmax were estimated from CTXglc and the calculated cerebral capillary plasma glucose concentration. Mean CMRglc was 8.8 mumol 100 g-1 min-1. The CMRglc did not correlate with plasma glucose concentration (r = .315, P = .543), whereas CTXglc showed a significant correlation with plasma glucose concentration (r = .836, P = .038). Estimation of the Michaelis-Menten constants from the best fit to the measured data produced values of Kt = 6.0 mumol mL-1 and Tmax = 32.6 mumol 100 g-1 min-1. These values for Kt in the developing human brain are similar to those that have been reported for the mature brain of adolescent and adult humans and adult nonhuman primates, indicating the affinity of the glucose transport protein for D-glucose is similar. However, Tmax is approximately one third to one half of the comparable values for mature brain, indicating a reduced number of available luminal transporters.  相似文献   

2.
In cultured chromaffin cells and plasma membrane vesicles from chromaffin tissue, the transport of D-[3H]adenosine followed Michaelis-Menten saturation kinetics, with Km values of 1.5 +/- 0.3 microM and 1.9 +/- 0.2 microM, respectively. The transport of the isomer, L-[3H]adenosine, showed sigmoidal kinetics in both preparations. In plasma membrane vesicles the S0.5 was 2.5 +/- 0.2 microM with a Hill coefficient of 2.8 and the Vmax value of 0.26 +/- 0.01 pmol s-1 (mg of protein)-1. In cultured chromaffin cells the kinetic parameters for L-[3H]adenosine were S0.5 = 6.2 +/- 0.2 microM and a Vmax 19.7 +/- 0.5 pmol/min per 10(6) cells, with a pronounced positive cooperativity. The Hill coefficient was 4.9. The transport of the L-isomer in cultured cells followed Michaelis-Menten kinetics at the lowest concentrations employed, below 2 microM. On the basis of these results, we propose a kinetic model whereby the adenosine transporter functions mnemonically.  相似文献   

3.
Since lactate released by glial cells may be a key substrate for energy in neurons, the kinetics for the uptake of L-[U-14C]lactate by cortical synaptic terminals from 7- to 8-week-old rat brain were determined. Lactate uptake was temperature-dependent, and increased by 64.9% at pH 6.2, and decreased by 43.4% at pH 8.2 relative to uptake at pH 7.3. Uptake of monocarboxylic acids was saturable with increasing substrate concentration. Eadie-Hofstee plots of the data gave evidence of two carrier-mediated uptake mechanisms with a high-affinity Km of 0.66 mM and Vmax of 3.66 mM for pyruvate, and a low-affinity system with a Km of 9.9 mM for both lactate and pyruvate and Vmax values of 16.6 and 23.1 nmol/30 s/mg protein for lactate and pyruvate, respectively. Saturable uptake was seen in the presence of 10 mM alpha-cyano-4-hydroxycinnamate. Lactate transport by synaptic terminals was much more sensitive to inhibition by sulfhydryl reagents than transport in astrocytes. Addition of 0.5 and 2 mM mersalyl decreased the uptake of 1 mM lactate by synaptic terminals by 59.3 and 66.37%, respectively. Pyruvate moderately decreased lactate transport, whereas 3-hydroxybutyrate had little effect. Quercetin, an inhibitor of lactate release, had little effect on the content of 14C lactate in synaptic terminals, supporting the concept that the majority of lactate produced within brain is from glial cells. Oxidation of L-[U-14C]lactate by synaptosomes was saturable, and yielded a Km of 1.23 mM and a Vmax of 116 nmol/h/mg protein. Overall the studies show that synaptic terminals from adult brain have a high capacity for transport and oxidation of lactate, consistent with the proposed role for this compound in metabolic trafficking in brain. Furthermore, the data provide kinetic evidence of two carrier-mediated mechanisms for monocarboxylic acid transport by synaptosomes and demonstrate that uptake of lactate by synaptic terminals is regulated differently than transport by astrocytes. Uptake of lactate by synaptic terminals also has differences from the systems described for neurons.  相似文献   

4.
Studies of the cardiac myosin fragment 1 concentration dependence of the rate constants for adenosine 5'-triphosphate (ATP) binding and steady-state hydrolysis reveal that the observed rate constants are remarkably dependent on the protein concentration. The kinetics for ATP binding are biphasic, and both the fast- and slow-phase rate constants and the respective fractions of fast and slow material vary as a function of protein concentration. Two different types of kinetic experiments were conducted, one in which the ATP concentration was fixed but the subfragment 1 concentration was varied and another for which the ATP/subfragment 1 ratio was fixed but both concentrations were varied. The results of these two experiments on cardiac subfragment 1 are consistent with an ATP-dependent reversible aggregation. Light-scattering experiments confirm the presence of this aggregation and the ATP dependence. Similar studies on rabbit skeletal subfragment 1 give monophasic, protein-independent kinetics consistent with a monomeric species in solution. a simple monomer--dimer mechanism can account for the cardiac subfragment 1 kinetic results when changes in tryptophan fluorescence are used. However, the light-scattering results show that cardiac myosin subfragment 1 undergoes multiple reversible molecular weight changes in solution and may be tetrameric at high concentrations.  相似文献   

5.
6.
The development of a hypoglycemic alarm system using a subcutaneous glucose sensor implies that a decrease in blood glucose is rapidly followed by a decrease in the signal generated by the sensor. In a first set of experiments the linearity and the kinetics of the response of sensors implanted in the subcutaneous tissue of normal rats were investigated during a progressive increase in plasma glucose concentration: the sensitivities determined between 5 and 10 mM and between 10 and 15 mM were not significantly different, and a 5-10 min delay in the sensor's response was observed. In a second set of experiments, performed in diabetic rats, the kinetics of the decrease in subcutaneous glucose concentration following insulin administration was monitored during a decrease in plasma glucose level, from 15 to 3 mmol/L. During the 20 first min following insulin administration, the sensor monitored glucose concentration in subcutaneous tissue with no lag time. Subsequently, the decrease in the estimation of subcutaneous glucose concentration preceded that of plasma glucose. This phenomenon was not observed when the same sensors were investigated in vitro during a similar decrease in glucose concentration and may be due to a mechanism occurring in vivo, such as the effect of insulin on glucose transfer from the interstitial space to the cells surrounding the sensor. It reinforces the interest of the use of implantable glucose sensors as a part of a hypoglycemic alarm.  相似文献   

7.
In the lateral hypothalamic area (LHA) of rat brain, approximately 30% of cells showed sensitivity to small changes in local concentrations of glucose. These "glucose-sensitive" neurons demonstrated four types of behavior, three of which probably represent segments of a continuous spectrum of recruitment in response to ever more severe changes in blood sugar. Type I cells showed maximum activity 相似文献   

8.
Dodecanedioic acid (C12), a saturated aliphatic dicarboxylic acid with twelve C atoms, was given as an intraperitoneal bolus to male Wistar rats, with the aim of evaluating C12 suitability as an energy substrate for parenteral nutrition. The 24 h urinary excretion of C12 was 3.9% of the administered dose. C12 kinetics were investigated by a one-compartment model with saturable tissue uptake and reversible binding to plasma albumin. The analysis of plasma concentration and urinary excretion data from different animals yielded the population means of the kinetic parameters: renal clearance was 0.72 ml/min per kg body weight (BW) (much smaller than inulin clearance in the rat), and maximal tissue uptake was 17.8 mumol/min per kg BW corresponding to 123.7 J/min per kg BW. These results encourage the consideration of C12 as a possible substrate for parenteral nutrition. To investigate the effect of C12 administration on glucose kinetics, two other groups of rats, one treated with an intraperitoneal bolus of C12 and the other with saline, were subsequently given an intravenous injection of D[-U-14C]glucose in a tracer amount. Radioactivity data of both control and C12-treated rats were analysed by means of a two-compartment kinetic model which takes into account glucose recycling. The estimates of glucose pool size (2.3 mmol/kg BW) and total-body rate of disappearance (82.1 mumol/min per kg BW) in control rats agreed with published values. In C12-treated rats, the rate of disappearance appeared to be reduced to 36.7 mumol/min per kg BW and the extent of recycling appeared to be negligible.  相似文献   

9.
Intracellular sugars are more reactive glycosylating agents than glucose. In vitro nonezymatic glycosylation of basic fibroblast growth factor (bFGF) by fructose, glucose-6-phosphate (G6P), or glyceraldehyde-3-phosphate (G3P) reduced high affinity heparin-binding activity of recombinant bFGF by 73, 77, and 89%, respectively. Mitogenic activity was reduced 40, 50, and 90%. To investigate the effects of bFGF glycosylation in GM7373 endothelial cells, we first demonstrated that GLUT-1 transporters were not downregulated by increased glucose concentration. In 30 mM glucose, the rate of glucose transport increased 11.6-fold, and the intracellular glucose concentration increased sixfold at 24 h and fivefold at 168 h. The level of total cytosolic protein modified by advanced glycosylation end-products (AGEs) was increased 13.8-fold at 168 h. Under these conditions, mitogenic activity of endothelial cell cytosol was reduced 70%. Anti-bFGF antibody completely neutralized the mitogenic activity at both 5 and 30 nM glucose, demonstrating that all the mitogenic activity was due to bFGF. Immunoblotting and ELISA showed that 30 mM glucose did not decrease detectable bFGF protein, suggesting that the marked decrease in bFGF mitogenic activity resulted from posttranslational modification of bFGF induced by elevated glucose concentration. Cytosolic AGE-bFGF was increased 6.1-fold at 168 h. These data are consistent with the hypothesis that nonenzymatic glycosylation of intracellular protein alters vascular cell function.  相似文献   

10.
The concentration of glucose in the brain's extracellular fluid remains controversial, with recent estimates and measurements ranging from 0.35 to 3.3 mM. In the present experiments, we used the method of zeronet-flux microdialysis to determine glucose concentration in the hippocampal extracellular fluid of awake, freely moving rats. In addition, the point of zero-net-flux was measured across variations in flow rate to confirm that the results for glucose measurement were robust to such variations. In 3-month-old male Sprague-Dawley rats, the concentration of glucose in the hippocampal extracellular fluid was found to be 1.00 +/- 0.05 mM, which did not vary with changes in flow rate. Three-month-old and 24-month-old Fischer-344 rats both showed a significantly higher hippocampal extracellular fluid glucose concentration, at 1.24 +/- 0.07 and 1.21 +/- 0.04 mM, respectively; there was no significant difference between the two age groups. The present data demonstrate variation in extracellular brain glucose concentration between rat strains. When taken together with previous data showing a striatal extracellular glucose concentration on the order of 0.5 mM, the data also demonstrate variation in extracellular glucose between brain regions. Traditional models of brain glucose transport and distribution, in which extracellular concentration is assumed to be constant, may require revision.  相似文献   

11.
During exercise skeletal muscle glucose utilization is higher than at rest. This is due to the combined effect of an increase in glucose supply, increased surface membrane glucose transport capacity and increased muscle glucose metabolism during exercise. The kinetics of glucose utilization in skeletal muscle during exercise in humans show an apparent Km of approximately 10 mM, indicating that changes in the blood glucose concentration around the physiological level of approximately 5 mM almost linearly translate into changes in muscle glucose utilization. The signalling events responsible for increased glucose transport in contracting muscle are not well understood, although calcium seems to be involved. Contractions do not utilize the proximal part of the insulin signalling cascade to activate glucose transport, because contractions do not cause phosphorylation of insulin receptor substrate 1 or activation of phosphatidylinositol 3-kinase. Endurance training leads to a decrease in glucose utilization during submaximal exercise of a given absolute submaximal power output in spite of a large increase in the total muscle GLUT4 content. The molecular mechanism behind this decrease in glucose utilization seems to be blunted exercise-induced translocation of GLUT4 protein to the sarcolemma, in turn blunting the exercise-induced increase in sarcolemmal glucose transport capacity.  相似文献   

12.
The purpose of this investigation was to determine whether the increase in the dopamine (DA) concentration in the rat striatum after a rapid iv injection of beta-phenylethylamine (PEA) can be quantitatively explained by the alteration of the striatum PEA concentration using a constructed DA metabolism model and to examine whether the time courses of the striatum DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) concentration can be described by this DA metabolism model. The time courses of PEA concentration in plasma and the striatum were determined by gas chromatography-mass spectrometry. The plasma PEA concentration was described by a two-compartment model with nonlinear elimination kinetics. The striatum PEA concentration was about 10 times higher than the plasma PEA concentration. The time course of the striatum PEA concentration was described by a diffusion-limited model including a Michaelis-Menten type transport system from plasma to the striatum and nonlinear elimination from the striatum. The DA concentration in the striatum increased immediately after PEA injection. In contrast, the DOPAC concentration in the striatum decreased immediately. HVA concentration in the striatum increased gradually. Assuming that the enhancement of DA concentration in the striatum after PEA injection is caused by the competitive inhibition of PEA on the reuptake of DA into DA neuronal terminals (and the metabolism from DA to DOPAC is then competitively inhibited by PEA in the DA neuronal terminals), the relationship between the enhancement of DA concentration and PEA concentration in the striatum was analyzed using a constructed DA metabolism model. The enhancement of the DA concentration in the striatum was described quantitatively by this model. Thus, it was clarified that a quantitative relationship between PEA concentration and the enhancement of DA concentration in the striatum is present after PEA injection. However, the time courses of the striatum DOPAC (lower dose) and HVA (time delay) concentrations could not be described by this model. These results indicated that other factors might be necessary to explain the time courses of the DOPAC and HVA concentrations in the striatum after PEA injection, such as the separate evaluation of the effect of PEA on the reuptake of DA into DA neuronal terminals and on the monoamine oxidase-B (MAO-B) activity in the DA neuronal terminals, and the metabolic pathway from DOPAC to HVA.  相似文献   

13.
Changes in the brain lactate concentration in cerebral extracellular fluid (ECF) during intravenous infusion of glucose and local administration of glucose were investigated in adult, conscious, unrestrained rats, with a microdialysis probe in the posterior hippocampus. The rats were infused intravenously with either 25% sucrose solution or 25% glucose solution at a rate of 16.6 microliters.min-1.100 g-1 for three hours. The blood glucose concentration reached 17.0 +/- 2.6 mM at the end of the glucose infusion, and brain ECF glucose showed a parallel change with the blood glucose concentration and increased to 2.37 +/- 0.30 mM. However, blood and brain ECF glucose concentrations did not change in animals infused with the sucrose solution. On the other hand, the blood lactate concentration in the glucose-infused group also increased from 0.93 +/- 0.18 mM to 2.85 +/- 0.39 mM at the end of the glucose infusion, which was significantly higher than that measured in the sucrose-infused group. The blood lactate level in the glucose-infused group returned to the basal level by the end of the experiment. Brain ECF lactate concentrations increased from 1.21 +/- 0.06 mM to 1.69 +/- 0.11 mM in glucose-infused animals, but did not change in the sucrose-infused animals. The brain ECF lactate concentration showed a positive correlation with the brain ECF glucose concentration in glucose-infused animals. Another group of rats was administered glucose locally for 90 min after substitution of artificial cerebrospinal fluid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Dosage adjustments of cyclosporine are confounded with an unexpected degree of variability, thus invalidating a direct proportionality between the oral dose rate and the steady-state concentration. In 1033 observations of dose rate and average steady-state concentration collected during therapeutic monitoring (area under the curve method) in 134 adult kidney transplant patients, a population pharmacokinetic analysis showed that a Michaelis-Menten model fitted the data better than a linear clearance model. It was further shown that the Michaelis-Menten constant (Km) parameter of the Michaelis-Menten model (the average steady-state concentration at half-maximal dose rate) increased during the first 4 months after transplantation whereas the maximal dose rate of the Michaelis-Menten model (Vmax) remained constant. The following parameters with interindividual variation in parenthesis were estimated: Vmax = 852 mg/24 hr (43%) and Km at 114 days after transplantation = 349 ng/ml (117%). An algorithm was derived from this population model that guides the clinician during the adjustment of oral cyclosporine dose rates.  相似文献   

15.
The drug-release kinetics of thyrotropin releasing hormone (TRH) containing copoly(dl-lactic/glycolic acid) (PLGA) microspheres were evaluated both in vitro and in vivo. The drug was encapsulated in PLGA using an in-water drying method through a water in oil in water emulsion. The drug release from the PLGA microspheres in vitro correlated well with that in vivo, and pseudo-zero-order release kinetics were observed. The pharmacokinetics of TRH following administration of this controlled-release parenteral dosage form have been also examined in rats. Following a transient increase in the plasma level due to an initial burst, steady-state plasma levels were observed. The duration of drug release estimated from the plasma level was comparable with the results in the in vitro and in vivo release studies. The steady-state plasma levels correlated well with the levels predicted from the pharmacokinetic parameters following a single subcutaneous or intravenous injection of TRH solution. The results of this study confirm the previously reported in vivo sustained release of TRH achieved with this drug-delivery system.  相似文献   

16.
The kinetics of quinidine and propranolol, administered singly and in combination, were evaluated in 5 healthy subjects. The orally administered doses resulted in plasma concentrations within the therapeutic range. For each drug the average steady-state plasma concentration, maximal plasma concentration, and time of maximum plasma concentration were not altered by the presence of the other drugs. This study shows no kinetic interaction between quinidine and propranolol in normal subjects.  相似文献   

17.
This is a study of the effect of insulin on the transport of K+ and Na+ from the blood into the brains of normal mice. Despite profound reductions in plasma and brain glucose levels, reduction of plasma K+ concentration and progressive deterioration of neurologic function 30-120 minutes after insulin injection, in 20-22-day-old animals there was no increase in brain K+ and Na+ concentrations. In fact, at 120 minutes, when the brain water content increased 0.7 per cent, brain K+ concentration was significantly reduced, not elevated. The effect of insulin on brain electrolyte and water content in adult mice was also studied. Although brain water increased 0.5 per cent at 120 minutes, there was no changes in brain Na+ or K+ concentrations at any time after insulin injection. The data from mice do not support a role of insulin in electrolyte transport in brain.  相似文献   

18.
Iodipamide was infused into three dogs with bile fistulas to achieve various steady-state blood levels. When using ultracentrifugation techniques, iodipamide was found to be highly bound to plasma protein. The total blood clearance was low relative to hepatic blood flow. For either the whole blood concentration or the unbound concentration of iodipamide, the biliary excretion was shown to be capacity limited with a transport maximum, Tm, of approximately 1.0mumole/kg/min. The steady-state renal excretion rate, plotted against the whole blood concentration of iodipamide, resulted in a concave ascending curve, which could lead to the false conclusion that iodipamide was undergoing active renal tubular reabsorption. However, when corrected for plasma protein binding, a linear relationship was obtained, suggesting that the renal excretion of iodipamide is a pseudo-first-order process. The Michaelis-Menten parameters for the extrarenal elimination, when calculated using the whole blood concentration of iodipamide, led to a similar discrepancy compared to the parameter estimates obtained from biliary excretion rate data. This discrepancy can be eliminated when one uses the unbound concentration of iodipamide in the parameter estimates.  相似文献   

19.
Purification and some properties of human erythrocyte hexokinase   总被引:2,自引:0,他引:2  
1. Human erythrocyte hexokinase (ADP:D-hexose 6-phosphotransferase, EC 2.7.1.1) was purified 50 000--100 000-fold with a final specific activity of about 25--50 units/mg protein using gel-filtration, ion-exchange chromatography and affinity chromagraphy. 2. After isoelectrofocusing ofthe preparation one major protein band could be detected besides a minor band. THe isoelectric point of the major protein band was found to be 4.7. 3. After purification the enzyme could be stabilized in a medium containing inorganic phosphate, glucose, glycerol and mercaptoethanol. 4. The molecular weight was determined by gel-filtration and was found to be 132 000+/-8000. 5. The enzyme shows a broad pH optimum ranging from 7.0 to 8.4. 6. The kinetic behavior of the purified enzyme at 37 degrees C was somewhat different from the normal Michaelis-Menten kinetics due to its instability. The affinity constants were 0.048--0.080 mM for glucose and 0.57--1.0 mM for Mg-ATP. 7. The enzyme was specific for Mg- ATP as the nucleotide substrate. Mg-UTP, Mg-ITP,Mg-GTP and Mg-CTP were not converted to corresponding diphosphates. Several hexoses could be phosphorylated by the enzyme. Mannose could be phosphorylated at the same rate as glucose, although the affinity for the enzyme was lower (5m=0.60mM). Much lower rates and lower affinities were found with 2-deoxy-D-glucose (5m=1.0mM), D(+)-glucosamine (5m=4.5 mM) and fructose (5m=10 mM). N-acetyl-D-glucosamine , galactose andsorbose were not phosphorylated at all.  相似文献   

20.
A model for the intravenous administration of propranolol by a bolus-infusion technique designed to rapidly produce, then maintain, predicted plasma drug concentrations was derived from elimination kinetics in single-dose studies. Prospective testing of this model in 6 adult male subjects revealed a close correlation between predicted and observed drug levels; desired plasma concentrations were achieved within 5 min and maintained over the 30-min study period. By subtracting previously given bolus doses from the dose calculated as needed to produce a desired plasma level, progressive increases in predicted propranolol levels could be effected, with apparent maintenance of equilibrium. Correlations between the bolus doses and infusion rates and the plasma drug levels were consistent and significant, and constitute nomograms from which the dose of drug required to produce a desired plasma level may be approximated. The clearance of propranolol declined slightly as the drug plasma level increased, but did not significantly affect the accuracy of the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号