共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
影响低温烧成陶瓷结合剂强度因素的探讨 总被引:4,自引:0,他引:4
系统探讨了影响低温烧成陶瓷结合剂强度的因素,通过对结合剂成份、结合剂及其它性能、添加剂及烧成制度的分析,找出了影响强度的最佳成分及最合适的烧成工艺制度。 相似文献
3.
4.
5.
文章探讨了纳米AlN对Na2O-B2O3-SiO2硼硅酸盐玻璃体系陶瓷结合剂金刚石磨具结构与性能的影响.在不同气氛条件下烧结的陶瓷结合剂金刚石磨具试样,利用万能压力试验机、洛氏硬度计、扫描电子显微镜等仪器,测试磨具试样的抗折强度、洛氏硬度、耐磨性,以及显微结构等.结果表明:纳米AlN含量为6wt%时,结合剂的开始熔融温度为670℃,比纯结合剂低10℃,且烧结温度范围增大;在氩气气氛下烧成,金刚石磨具试样的抗折强度、洛氏硬度、耐磨性等,比在大气气氛下烧成磨具的均有所提高,其中折强度为60.46MPa,洛氏硬度为88;由SEM图谱可以看出,加入纳米AlN后,结合剂与磨粒间结合良好,且组织均匀. 相似文献
6.
7.
文章根据制造陶瓷结合剂cBN磨具的特殊要求,对磨具用低温高强度陶瓷结合剂及其性能进行了深入研究。通过调整陶瓷结合剂中各氧化物成分含量,使用SKZ-500型数显抗折试验机、X光衍射(XRD)、电子扫描电镜(SEM)等测试分析仪器,对陶瓷结合剂的性能进行了测试。最后确定了低温高强度陶瓷结合剂的化学成分配比范围:w(Si02)为40%~60%,w(Al2O3)为5%~15%,w(B2O3)为10%~25%,w(R2O)为2%~12%,w(R0)为5%~20%。 相似文献
8.
实验以SiO2-B2O3-Al2O3-R2O体系作为基础结合剂,选择ZrO2作为添加剂,通过差示扫描量热分析仪、X射线衍射仪、扫描电镜等检测手段,研究其含量对陶瓷结合剂及CBN磨具性能的影响.结果表明,随ZrO2含量的增加,陶瓷结合剂耐火度升高,流动性变差;当ZrO2含量为1%时,陶瓷结合剂抗折强度达到75 MPa,显微硬度838 MPa,这得益于结合剂中ZrSiO4细晶的析出;此时CBN磨具有最大抗折强度45 MPa和最大体积密度2.32 g·cm-3,且结合剂与磨粒润湿性好,磨具组织致密,气孔分布均匀,微观结构良好. 相似文献
9.
本文采用三元碱R2O-Al2O3-B2O3-SiO2系为基础陶瓷结合剂(编号1#),添加适量的碱土金属氧化物MgO、ZnO和氟化物CaF2(编号2#)以及在此基础上外加适量的稀土金属氧化物CeO2(编号3#),制备出1#、2#和3#三种陶瓷结合剂,研究添加剂对陶瓷结合剂性能的影响.结果表明:在640℃下烧结,2#陶瓷结合剂试样抗折强度达到87.69 MPa,较1#陶瓷结合剂试样提高了50.7%,熔融温度从840℃降到770℃;而3#陶瓷结合剂试样在该烧结温度下抗折强度达到92.05 MPa,较1#陶瓷结合剂试样提高了53.1%,熔融温度降到730℃,高温润湿性良好;2#陶瓷结合剂和3#陶瓷结合剂都有新晶相锂霞石生成,其热膨胀系数都明显低于1 #陶瓷结合剂.将此三种陶瓷结合剂在相同的工艺条件下制备成金刚石磨具,其中用3#陶瓷结合剂制备的金刚石磨具抗折强度和洛氏硬度明显高于另外两种陶瓷结合剂,分别达到59.34 MPa和60. 相似文献
10.
以金属Al粉与α-Al2O3微粉作为陶瓷结合剂的添加剂,研究其对陶瓷结合剂抗弯强度、矿物组成及气孔分布等性能的影响.结果表明:金属Al粉添加量为4wt%,在620℃下烧结时,试样抗折强度最高为29.97 MPa,较基础陶瓷结合剂试样提高了10.3%;单独添加α-Al2O3微粉能够提高结合剂的黏度,防止试样在烧成过程中产生不均匀变形,提高陶瓷结合剂的网络致密度;在680℃下烧结,试样抗折强度大幅提高,最高强度为65.46 MPa,较基础陶瓷结合剂提高了140%,并且与陶瓷结合剂发生反应生成霞石(NaAlSiO4),霞石的生成有拓宽烧结范围,抑制裂纹延伸的作用;金属Al粉与α-Al2O3微粉共同加入对陶瓷结合剂抗折强度的提高有更好的效果,在680℃下烧结,当金属Al粉添加量为2wt%,α-Al2O3微粉添加量为30wt%时,试样抗折强度最高为80.33 MPa,较基础陶瓷结合剂试样提高了195.5%;金属Al粉的加入不会影响陶瓷结合剂气孔的形成,气孔分布均匀且较多,具备容纳磨屑与携带冷却液的性能. 相似文献
11.
12.
13.
郜永娟李克华苏鸿良刘权威史林峰韩雪赵秀香 《超硬材料工程》2017,(1):19-22
文章研究了硼酸铝晶须、铝粉含量对陶瓷结合剂、陶瓷金刚石砂轮的物理性能及磨削性能的影响。研究发现,添加剂的引入会降低结合剂的流动性,5wt%铝粉使结合剂的流动性提高了15.6%;添加剂的引入使结合剂抗折强度呈现先增加再减小的现象,当晶须或铝粉添加量为3wt%时,结合剂的抗折强度提高10%~20%;5wt%硼酸铝晶须使金刚石砂轮的抗折强度提高11%,且砂轮磨削更锋利。 相似文献
14.
15.
以R_2O-RO-B_2O_3-Al_2O_3-SiO_2为基础陶瓷结合剂,在不改变原有结合剂配方的组成前提下,用纳米Al_2O_3、纳米SiO_2、纳米CaO部分取代原有配方中的Al_2O_3,SiO_2,CaO成分,运用正交实验的实验方法,研究了纳米组分优化对陶瓷结合剂抗折强度的影响。试验结果表明:纳米组分优化对结合剂抗折强度影响显著,其中当部分替换纳米Al_2O_3含量为2%、纳米CaO含量为1%、纳米SiO_2含量为4%时,优化配方抗折强度最大,其抗折强度达到104.24MPa。 相似文献
16.
以金刚石和陶瓷结合剂为原料,以制备的陶瓷结合剂金刚石砂轮为研究对象,研究了烧结温度对其性能的影响.金刚石的热重(TG)和差示扫描量热(DSC)以及陶瓷结合剂的DSC、X射线衍射(XRD)和流动性的分析,确定陶瓷结合剂金刚石砂轮试样的烧结温度上限.通过对陶瓷结合剂金刚石砂轮试样的XRD、扫描电子显微镜(SEM)、开口气孔率、弯曲强度和洛氏硬度的检测和分析,研究其最佳的烧结温度和微观结构.结果表明,实验所用的金刚石开始氧化温度为662.13℃,完全氧化温度为888.00℃.陶瓷结合剂的玻璃转化温度是774.03℃.烧结温度在740℃时,陶瓷结合剂未与金刚石发生化学反应.温度升高时,结合剂的流动性增大,陶瓷结合剂金刚石砂轮试样的开口气孔率也增大.在烧结温度为700℃时,试样的弯曲强度(84.11 MPa)和洛氏硬度(87.66 HRB)达到最大值,金刚石之间的结合剂"桥"更致密,结合剂与金刚石之间润湿性更好,形成有合适气孔的整体. 相似文献
17.
18.
介绍了近年来研究制成的新型陶瓷结合剂和陶瓷浇注料,分析了新型陶瓷浇注料的质量特性,证明了使用高稠度陶瓷结合剂服液生产浇注料不但能提高产品质量,而且可以减少资源消耗,保护环境,是当今陶瓷注料生产中最理想的结合剂。 相似文献
19.
利用细分散性颗粒(〈1μm)稀土的电熔莫来石以一段湿粉硫法制成了水分为12%的高稠度陶瓷结合剂悬浮液。在采用离心法成型浇钢用石英耐火材料时,向莫来石高稠度陶瓷结合剂悬浮液中加入高分散性熔融石英(系生产废料)。引入上述加入剂后,可以显著降低莫来石高稠度陶瓷结合剂悬浮液的延展性、降低结合剂的气孔率、 降低原始结合剂及烧成后结合剂的线性热膨胀系数。 相似文献
20.
砂轮中具有适量的气孔可以在磨削的过程中起良好的冷却、容屑排屑及促使砂轮自锐的作用。选用四种不同的造孔剂,在相同的试验条件下,通过添加不同含量的造孔剂,对比和分析了造孔剂的种类与用量对结合剂强度及砂轮性能的影响。试验结果为:添加4种不同的造孔剂均对结合剂的强度有一定的影响,造孔剂的含量越高,结合剂的强度下降幅度越大。氧化铝空心球及空心玻璃微球造出的气孔比较均匀,且孔隙率比较容易控制,制备出的砂轮在磨削的过程中容易产生较多的气孔,兼顾了砂轮的强度与锋利性。以硫酸铵为造孔剂制备的砂轮气孔比较细小而均匀,而且气孔之间是连通的,但硫酸铵对结合剂的强度影响较大,不宜过多添加。以碳粉为造孔剂制备的砂轮中有轻微的碳粉残留,对砂轮的强度影响较大。 相似文献