首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of plasma-charging damage on ultra-thin gate oxide is discussed. The argument for plasma-charging damage becoming less important is examined. Without considering the area and failure rate scaling effect, one mode of charging damage does become less important while other modes continue to be a serious problem. After scaling is properly accounted for, all charging damage remains a serious problem. The problem is more serious for thinner gate oxides because its life time becomes a limiting factor in device scaling. No one has yet made proper measurement for charging damage in the ultra-thin gate oxide regime. Stress-induced leakage current with properly designed tester may be used for ultra-thin gate-oxide damage measurement if one has the required sensitivity in the measurement. However, one must take care to use stress to reveal the latent defects that are hidden by annealing.  相似文献   

2.
While accurate measurement of gate-oxide leakage in isolated CMOS oxides can be straightforward, it is not the case for CMOS oxides connected to a plasma-charging protection device. In this paper, a method enabling accurate gate-oxide leakage extraction from CMOS transistors directly connected to a gated MOSFET-based charging protection device is described. The method extracts gate-oxide leakage at the bottom side of the gate-oxide from the drain/source terminal of the protected MOSFETs biased into inversion while diverting the parasitic leakages from the protection device into a P+ tap sink. The location and design of the P+ tap sink play an important role on the success of the method. The method demonstrates a high measurement accuracy over the conventional method with a nearly 99% absorption efficiency of the protection-device-induced leakage by the P + tap sink, with the test structures used in this study. The method enables a saving of up to 30% of the layout space in the design of the charging test structures in test chips by eliminating usage of the fuse between the protected and protecting devices. A correlation study performed with the data measured by the new method and the conventional method suggests that both protected and protecting transistors can experience gate-oxide damage at the same time during back-end integrated circuit (IC) manufacturing process if the protected transistors violate the gate-charging design rules. It also indicates that the protected transistors have higher chance to receive more severe damage than the protecting transistors due to different oxide damage mechanisms associated with the terminal connectivity of these transistors  相似文献   

3.
A novel monitoring method for plasma-charging damage is proposed. This method performs a quick and accurate evaluation using antenna PMOSFET. It was found that not only hot-carrier (HC) lifetime but transistor parameters such as initial gate current and substrate current were changed according to the degree of plasma-charging damage. However, the present work suggests that monitoring the shift of drain current after a few seconds of HC stress is a more accurate method to indicate plasma-charging damage. The monitoring method using the present test structure is demonstrated to be useful for realizing highly reliable devices  相似文献   

4.
Sinusoidal ac signals are applied to 90-Å thick gate-oxide in 0.5-μm n-MOSFETs. The objective is to emulate ac stressing to devices, recently reported to occur during plasma processes. AC stressing is found to be more damaging to the oxide and oxide/silicon interface when compared to dc stressing. The damage induced by the ac stress is observed to depend on the signals frequency and amplitude. It is proposed that carrier hopping is primarily responsible for oxide current and device damage observed following the ac stress. This hopping current is insignificant during high-field dc stress when Fowler-Nordheim tunneling becomes the dominant conduction mechanism  相似文献   

5.
Integration of RF analog functions with CMOS digital circuits offers great advantages in terms of cost and performance. Plasma-charging damage is known to degrade MOSFET characteristics and can be expected to impact the RF performance as well. In this work, we present for the first time a thorough investigation of the impact of plasma-charging damage on the RF characteristics of deep-submicron MOSFET. Our result shows that, with ultra-thin gate oxide, a 400°C forming gas annealing can completely recover the RF performance degradation due to plasma-charging damage  相似文献   

6.
The charge-pumping measurement technique was successfully applied to submicron (Leff = 0.35 μm) n-MOSFETs on ultra-thin (50 nm) SOI film. The hot-carrier-induced degradation is studied by examining the damages to both gate-oxide and buried-oxide (BOX) interfaces. We found that when stressed at maximum substrate current, interface-trap generation is still the primary cause for hot-carrier-induced degradation. Even for ultra-thin-film SOI devices, the hot-carrier-induced damage is locally confined to the gate-oxide interface and only minor damage is observed at the buried-oxide interface. The buried-oxide interface charging contributes less than 5% of the overall drain current degradation.  相似文献   

7.
Plasma-charging damage on gate dielectrics of MOS devices is an important issue because of shrinking dimension, plasma nonuniformity, and effects on high-k gate dielectrics. A comprehensive study of plasma-charging effects on the electrical properties of MOS devices was investigated in this work. Shunt diodes were used to estimate the charging polarity distribution. For high-frequency application, the 1/f noise was found to be a promising index for assessing plasma-charging damage. Gate oxynitride formed by two-step nitridation was demonstrated to have better electrical reliability as compared to the conventional one-step nitridation, especially accompanied by amorphous silicon gate electrode. This improvement could be attributed to the relaxation of interface stress by amorphous silicon gate electrode and the suppression of hydrogen effects by gate oxynitride using two-step nitridation. Plasma-charging damage on Si3N4 and Ta2O5 gate dielectrics with high dielectric constant was also investigated. For MOS devices with Si3N4 film, the leakier characteristic and shorter time to breakdown reveal its inferior reliability. For MOS devices with Ta2O5 gate dielectric, the trap-assisted current mechanism makes a thicker physical thickness of Ta2O5 film more susceptible to plasma-charging-induced damage. Smaller physical thickness of Ta2O5 film in MOS devices is favorable due to the better reliability and comparable plasma-induced electrical degradation  相似文献   

8.
The correlation between channel hot-carrier stressing and gate-oxide integrity is studied. It is found that channel hot carriers have no detectable effect on gate-oxide integrity even when other parameters (e.g., ΔVT and ΔI D) have become intolerably degraded. In the extreme cases of stressing at VGVT with measurable hole injection current, however, the oxide charge to breakdown decreases linearly with the amount of hole fluence injected during the channel hot-hole stressing. This may limit the endurance of a nonvolatile memory using hot holes for erasing. This can also explain the gate-to-drain breakdown of a device biased in the snap-back region, since snap-back at low gate voltage is favorable for hole injection. Snap-back-induced oxide breakdown could be an ESD (electrostatic discharge) failure mechanism  相似文献   

9.
In this letter, a mechanism that will make negative bias temperature instability (NBTI) be accelerated by plasma damage in low-temperature polycrystalline silicon thin-film transistors (LTPS TFTs) is presented. The experimental results confirm that the mechanism, traditionally found in the thin gate-oxide devices, does exist also in LTPS TFTs. That is, when performing the NBTI measurement, the LTPS TFTs with a larger antenna ratio will have a higher degree in degradation of the threshold voltage, effective mobility, and drive current under NBTI stress. By extracting the related device parameters, it was demonstrated that the enhancement is mainly attributed to the plasma-damage-modulated creating of interfacial states, grain boundary trap states, and fixed oxide charges. It could be concluded that plasma damage will speed up the NBTI and should be avoided for the LTPS TFT circuitry design  相似文献   

10.
CV measurement is shown to be a more sensitive technique for characterizing plasma-etching induced damage than oxide breakdown. Plasma etching of Al is shown to produce severe distortions in the oxide CV characteristics, from which one can easily deduce the plasma charging current over many orders of magnitude. A clear radial variation of stressing is found and the charging current increases in proportion to the Al peripheral length rather than the area. Using the measured 10-pA/μm of the charging current, one should be able to predict the impact of this etch process on oxide integrity and interface stability for a given antenna geometry  相似文献   

11.
This paper reports an ESD internal gate-oxide damage occurred on the digital-analog interface of a mixed-mode CMOS IC. A new ESD protection method is proposed to rescue this internal gate-oxide damage by adding ESD-protection devices on the long metal line between digital-analog interfaces. Experimental verification has confirmed that the IC product can be rescued to pass 2-KV ESD stress from the digital/analog VDD to digital/analog VSS pads without causing any internal damage again.  相似文献   

12.
Measuring mechanical implications of high current densities in microelectronic packaging interconnects has always been a challenging goal. Due to small interconnect size this task has typically been accomplished by measuring the change in electrical resistance of the joint. This measurement parameter is global and does not give local mechanical state information. Also, understanding strain evolution in the solder over time is an important step toward developing a damage mechanics model.The real-time, full-field, strain displacement in a eutectic Sn/Pb solder joint during electrical current stressing was measured with Moiré interferometry (Post et al., High sensitivity Moire, Springer, New York, 1994) under in situ conditions. A finite element model simulation for thermal stressing was performed and compared with measured strain. The initial results show that the measured strain was largely due to thermal stressing versus the current density of 1.8 × 102 A/cm2. A second Moiré interferometry experiment with thermal control distinguishes deformation of solder joint due to pure current stressing above 5000 A/cm2.  相似文献   

13.
Plasma etching and resist ashing processes cause current to flow through the thin oxide and the resultant plasma-induced damage can be simulated and modeled as damage produced by constant current electrical stress. The oxide charging current produced by plasma processing increases with the `antenna' size of the device structure. Oxide charge measurement such as CV or threshold voltage is a more sensitive technique for characterizing plasma-processing induced damage than oxide breakdown. The oxide charging current is collected only through the aluminum surfaces not covered by the photoresist during plasma processes. Although forming gas anneal can passivate the traps generated during plasma etching, subsequent Fowler-Nordheim stressing causes more traps to be generated in these devices than in devices that have not been through plasma etching. Using the measured charging current, the breakdown voltage distribution of oxides after plasma processes can be predicted accurately. Oxide shorts density of a single large test capacitor is found to be higher than that in a multiple of separated small capacitors having the same total oxide area. This would lead to overly pessimistic oxide defect data unless care is taken  相似文献   

14.
Typically, the plasma charging effect is investigated by using antenna test structures that do not replicate well enough conditions occurring in real VLSI integrated circuits (ICs). Consequently, understanding, modeling, and detection of plasma-charging-induced gate oxide damage in real IC's is often inadequate. This paper discusses a new plasma-charging monitoring technique that assesses the extent of the above problem. This technique employs a multiplexed antenna monitoring (MAM) test structure with 400+ antenna configurations to determine the dependency between IC layout and the extent of gate oxide damage. The paper reports the results of application of this technique to a 0.35-μm, 75-Å gate oxide, CMOS technology. The obtained results lead to a new definition of “antenna ratio” that is supposed to capture plasma-charging conditions in real VLSI circuits  相似文献   

15.
Serious n-channel transistor hot-carrier lifetime degradation due to plasma-charging damage during PETEOS deposition is reported for the first time. Contrary to conventional wisdom, a dielectric film thickness dependent damage is observed. A new mechanism for charging-damage during plasma deposition of dielectric is proposed. This new mechanism uses photoconduction to explain why the antennae continue to charge up after a layer of dielectric is deposited on top. Some numerical estimation is provided  相似文献   

16.
Hot-carrier reliability is studied in core logic PMOSFETs with a thin gate-oxide (Tox=2 nm) and in Input/Output PMOSFETs with a thick gate-oxide (6.5 nm) used for systems on chip applications. Hot-hole (HH) injections are found to play a more important role in the injection mechanisms and in the degradation efficiency. This depends on the technology node for stressing voltage conditions corresponding to channel hot-hole injections, i.e. closer to the supply voltage than the other voltage condition. Distinct mechanisms of carrier injections and hot-carrier degradation are found in core devices used for high speed (HS) and low leakage (LL) applications where the hole tunneling current dominates at low voltages while the electron valence band tunneling from the gate occurs at gate-voltages above −1.8 V. Devices with Tox=6.5 nm have shown the existence of a thermionic hot-hole gate-current which is directly measured at larger voltages. This is related to the increase in the surface doping, the thinning of the drain junction depth and the location of the hot-carrier generation rate which is closer to the interface. Results show that hole injections worsen the hot-carrier damage in thin and thick gate-oxides which are both distinguished by the effects of the interface trap generation, the permanent hole trapping and the hole charging–discharging from slow traps using alternated stressing in thin gate-oxides. This consequently leads to a significant lifetime increase in 2 nm HS, LL devices with respect to 6.5 nm Input/Output devices explained by the dominant effect of the fast interface trap generation due to the hole discharge from slow traps and bulk oxide traps in 2 nm devices at the tunneling distance of the interface.  相似文献   

17.
Permanent damage induced by Channel Hot-Carrier (CHC) injections have been distinguished from the charge–discharge of near-interface traps in ultra-thin gate-oxide (1.6 nm) MOSFETs. It is shown that usual DC accelerating techniques mostly devoted to CHC damage at large voltage conditions cannot be used alone for low supply voltage (VDD = 1V) MOSFETs. This arises from the charging of slow traps which induces a worst-case of damage which is relaxing in different ways depending on the discharging bias and cold phases. This is particularly more severe under hole injections in P-channel than under electron injections in N-channel MOSFETs in relation to the smaller mobility of holes and to the gate-oxide nitridation which induces deep traps from the oxide valence band. The true effects of the distinct damage and relaxations are further analysed using AC stresses which are required for the worst-case determination in advanced logic circuits. This is further evidenced by the determination of the effective quasi-static time factors dependent on the alternated damaging, discharging, and relaxing periods involved in ultra-thin gate-oxide MOSFETs operating at low voltage.  相似文献   

18.
The study reported herein examines and compares damage to n-channel and p-channel metal-oxide-silicon field-effect transistors (MOSFETs) from direct current (d.c.) and alternating current (a.c.) electrical stresses as well as the relationship of this damage to plasma processing damage in MOSFETs. The lightly-doped drain (LDD) MOSFETs used are of 0.5 μm channel length and with a 90 Å thick thermally grown gate oxide fabricated using a full flow CMOS process up to and including metal-1 processes and post-metallization annealing (PMA). The damage to MOSFETs is assessed using transistor parameter characterization and charge-to-breakdown measurements on the gate oxide. It is found that manifestations of d.c. stress-induced damage and a.c. stress-induced damage to transistors are fairly similar in that both forms of damage are passivated by PMA and are reactivated by a subsequent d.c. electrical stress. However, a.c. stress-induced damage is observed to occur at much lower electric fields across the gate oxide than those necessary for d.c. stress-induced damage to be significant. This is attributed to a.c. currents, caused by carrier hopping, occurring at relatively low electric fields. One implication of our results is that plasma-charging damage, often attributed to d.c. electrical stress alone, may comprise an a.c. electrical stress component too.  相似文献   

19.
When the gate-oxide of a MOSFET breaks down, a leakage path is created between channel and gate. In this work, we demonstrate that a simple leakage current increase model can predict the impact of gate-oxide breakdown on MOSFET performance from dc to microwave frequency. We show that severe reduction in RF performance due to input/output mismatch and a gain reduction can result from gate-oxide breakdown  相似文献   

20.
Hot-carrier stressing carried out as a function of substrate voltage on 2-μm NMOS devices under bias conditions Vd =8 V and Vg=5.5 V is discussed. The time power-law dependence of stressing changes as a function of substrate bias (Vb), having a power-law gradient of 0.5 for Vb=0 V and 0.3 for Vb=-9 V. Investigation of the type of damage resulting from stressing shows that at Vb=0 V, interface state generation results, while at Vb=-9 V, the damage is mostly by charge trapping. Measurements of the gate current under these two substrate bias conditions show that the gate electron current increases by over two orders of magnitude upon application of a strong back bias. It is suggested that the electron trapping arises from this enhanced gate electron current under large substrate voltage conditions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号