首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fallowing increases soil organic carbon (SOC) during the fallowing phase. However, this benefit is lost quickly during the cropping phase. The objective of this study was to evaluate SOC dynamics of an improved fallow-maize rotation under no-tillage (NT) and conventional tillage (CT) from time of fallow termination, through the next two cropping seasons. The treatments studied were improved fallows of Acacia angustissima (A. angustissima) and Sesbania sesban (S. sesban), natural fallow and continuous maize. Our hypothesis is that fallowing maintained higher SOC and lower soil bulk densities through the cropping phase when compared with continuous maize system and that NT maintained higher SOC when compared with CT. Soil organic carbon was significantly greater under fallows than under continuous maize from fallow termination to the end of the second cropping season. Soil organic carbon for the 0–5 cm depths was 11.0, 10.0, 9.4 and 6.6 g kg−1 for A. angustissima, S. sesban, natural fallow and continuous maize, respectively at fallow termination. After two cropping seasons SOC for the same depth was 8.0, 7.0, 6.1, 5.9 g kg−1 under CT and 9.1, 9.0, 8.0, 6.0 g kg−1 under NT for A. angustissima, S. sesban, natural fallow and continuous maize, respectively. Total SOC stocks were also higher under fallows when compared with continuous maize at fallow termination and after two cropping seasons. Soil bulk densities were lower under fallows when compared with continuous maize during the period of study. We concluded that fallows maintained greater SOC and NT sequestered more SOC than CT. Acacia angustissima was the better tree legume fallow for SOC sequestration when compared with S. sesban or natural fallow because it maintained higher SOC and lower bulk densities after two seasons of maize cropping.  相似文献   

2.
Phosphorus (P) deficiency is a major constraint for crop production in many parts of the world including Myanmar and field research into management of P fertilizers and P responsiveness of crops on infertile soils has been limited. The purpose of this study is to determine maize yield response to different forms of P fertilizers on an acidic (pH 4.9) P deficient (Olsen-P 8 mg kg−1) Yellow Earth (Acrisol) in Southern Shan State, Myanmar and to establish relationships between soil Olsen-P test values (0.5 M sodium bicarbonate extracted P) and maize yield. Field experiments were conducted during two cropping seasons. There were 15 treatments in total: P was applied at seven rates of a soluble P fertilizer as Triple superphosphate (TSP) (0–120 kg P ha−1) to establish a P response curve; one rate of a partially soluble P fertilizer (Chinese partially acidulated phosphate rock, CPAPR) and two organic P fertilizers (farmyard manure (FYM) and Tithonia diversifolia) at 20 kg P ha−1; combination of TSP and CPAPR at 20 kg P ha−1 with FYM and Tithonia at 20 kg P ha−1; an additional treatment (TSP 20 kg P ha−1 plus 2.5 t ha−1 dolomite) for assessing the liming effect of a local dolomite. In Year 1, applications of TSP at 40–60 kg P ha−1 produced near maximum grain yields, whereas in Year 2 this could be achieved with a reapplication of 20–30 kg P ha−1 on top of the residual value of the Year 1 application. In both years, CPAPR, TSP and Tithonia at 20 kg P ha−1 significantly increased maize grain yield, but FYM failed to increase grain yield. In Year 1, CPAPR and TSP effects on grain yield were higher than that of Tithonia but in Year 2 the effects were same for all these three treatments. In both years the combination of FYM (20 kg P ha−1) with TSP (20 kg P ha−1) produced significantly higher grain yield than TSP at 20 kg P ha−1 whereas 40 kg P ha−1 of TSP application did not significantly increase grain yield over the TSP application at 20 kg P ha−1. Similar results were obtained when half the P applied as CPAPR was substituted with P from Tithonia and FMP during the first year. The combined data from the two years experiment suggests that 90% of maximum maize grain yields can be obtained by raising the Olsen-P to 30–35 mg P ha−1 soil at the silking stage of growth. Olsen-P for the treatments at silking in Year 1 was: Control < FYM, Tithonia < TSP, CPAPR and in Year 2 was: Control < FYM < Tithonia < TSP, CPAPR. The results showed that for a long-term approach, repeated annual applications of Tithonia can be considered as a potential P source for improving soil P status in P deficient Yellow Earths.  相似文献   

3.
Phosphorus release from decomposing leaf biomass of Calliandra calothyrsus Meissner, Tithonia diversifolia Hensley A.Gray and Tephrosia vogelii Hook.f. agroforestry species applied alone or combined with triple super phosphate (TSP) was studied at World Agroforestry Centre (ICRAF) laboratory for 56 days using an incubation method. The effects of above treatments on maize yield were evaluated in the field at Rubona, southern province of Rwanda between the years 2001 and 2004. The net cumulative phosphorus (P) mineralised ranged from 16.2 to 212.2 mg P kg−1. The net P mineralisation rates from green manure, TSP applied alone or combined with green manure decreased in the order green manure > green manure + TSP > TSP > lime > control. The best plant residues quality for predicting P mineralisation is total P, C, and C:P & C:N ratios. Relative to the control, leaf biomass combined with TSP resulted in six times higher maize grain yield at the end of the experiment i.e., from 0.9 to 7.1 t ha−1. In the fourth season, application of Tithonia diversifolia Hensley A.Gray green manure combined with TSP at 50 kg P ha−1 resulted in higher maize yield (25% increase) than TSP and Tithonia diversifolia Hensley A.Gray (9% increase) applied alone at the similar rate. Therefore, application of plant residues and TSP alone might not be sufficient to meet maize plant P requirements and to achieve the yield potential of maize in the Rubona soils unless supplemented with mineral fertilisers.  相似文献   

4.
The release of mineral-N in soil from plant residues is regulated by their ‘quality’ or chemical composition. Legume materials used by farmers in southern Africa are often in the form of litter with N concentration <2%. We investigated the decomposition of Sesbania sesban and Acacia angustissima litter in the field using litterbags, and N mineralization of a range of legume materials using a leaching tube incubation method in the laboratory. The mass loss of the litter could be described using a modified exponential decay model: Y = (Y 0Q)ekt + Q. The relative decomposition constants for Sesbania and Acacia litter were 0.053 and 0.039 d−1, respectively. The % N mineralized from fresh Sesbania prunings was 55% compared with only 27% for the Sesbania litter after 120 days of incubation under leaching conditions. During the same period, fresh prunings of Acacia released only 12% of the added N while Acacia litter released 9%. Despite the large differences in N concentration between Acacia prunings and its litter, the total mineralized N was similar, as mineralization from prunings was depressed by the highly active polyphenols. While N supply may be poor, these slow decomposing litter materials are potentially useful for maintaining soil organic matter in smallholder farms. In two field experiments with contrasting soil texture, Sesbania, Acacia and Cajanus produced large amounts of biomass (>5 Mg ha−1) and improved N cycling significantly (>150 kg N ha−1) on the clay loam soil, but adapted poorly on the sandier soil. There was a rapid N accumulation in the topsoil at the beginning of the rains in plots where large amounts of Sesbania or Acacia biomass had been incorporated. Despite the wide differences in resource quality between these two, there was virtually no difference in N availability in the field as this was, among other factors, confounded by the quantity of N added. A substantial amount of the nitrate was leached to greater than 0.4 m depth within a three-week period. Also, the incidence of pests in the first season, and drought in the second season resulted in poor nitrogen use efficiency. Our measurements of gaseous N losses in the field confirmed that N2O emissions were <0.5 kg N ha−1. As we had measurements of all major N flows, we were able to construct overall N budgets for the improved fallow – maize rotation systems. These budgets indicated that, in a normal rainfall season with no major pest problems, reducing nitrate leaching would be the single largest challenge to increased N recovery of added organic N in the light textured soils.  相似文献   

5.
Legume–maize rotation and maize nitrogen (N)-response trials were carried out simultaneously from 1998 to 2004 in two distinct agro-ecological environments of West Africa: the humid derived savannah (Ibadan) and the drier northern Guinea savannah (Zaria). In the N-response trial, maize was grown annually receiving urea N at 0, 30, 60, 90 and 120 kg N ha−1. In Ibadan, maize production increased with N fertilization, but mean annual grain yield declined over the course of the trial. In Zaria, no response to N treatments was observed initially, and an increase in the phosphorus (P) and sulphur (S) fertilizer application rate was required to increase yield across treatments and obtain a response to N applications, stressing the importance of non-N fertilizers in the savannah. In the rotation trial, a 2-year natural fallow–maize rotation was compared with maize rotated with different legume types: green manure, forage, dual-purpose, and grain legumes. The cultivation of some legume types resulted in a greater annual maize production relative to the fallow–maize combination and corresponding treatments in the N-response trial, while there was no gain in maize yield with other legume types. Large differences in the residual effects from legumes and fallow were also observed between sites, indicting a need for site-specific land management recommendations. In Ibadan, cultivation of maize after the forage legume (Stylosanthes guianensis) achieved the highest yield. The natural fallow–maize rotation had improved soil characteristics (Bray-I P, exchangeable potassium, calcium and magnesium) at the end of the trial relative to legume–maize rotations, and natural fallow resulted in higher maize yields than the green manure legume (Pueraria phaseoloides). In Zaria, maize following dual-purpose soybean achieved the highest mean yield. At both sites, variation in aboveground N and P dynamics of the legume and fallow vegetation could only partly explain the different residual effects on maize.  相似文献   

6.
Changes in phosphorus (P) fractions and their plant-availability and downward movement in two strongly P fixing acidic Andosols (Allophanic and Pumice Soils) under Pinus radiata plantations in New Zealand were studied 2 years after triple superphosphate (TSP) and a phosphate rock (BGPR, origin Ben Guerir, Morocco) application, each at four rates, to determine the fate and plant availability of fertilizer-derived P in these soils. The rate of increase of the concentrations of the P fractions was highest for NaOH-Pi (inorganic P associated with Fe and Al oxides and allophane) when TSP was applied and highest for H2SO4-Pi (predominantly calcium phosphates or apatite-type P minerals) when BGPR was applied. The largest pool of soil P, the NaOH-Po (labile organic P), was unaffected by the P fertilizer applications. The rate of NaOH-Pi concentration increase was higher in the higher P fixing Allophanic Soil than in the Pumice Soil. Both types of fertilizers increased resin-Pi (Inorganic P freely available to the plant) and Bray-2 P concentrations but only the TSP application increased Olsen P concentration. Phosphorus derived from TSP and BGPR applications moved down to 10–20 cm soil depth within 2 years of application in the Pumice Soil, but did not move below 10 cm depth in the higher P fixing and less porous Allophanic Soil. The fertilizers significantly increased needle P concentrations 2, 3 and 4 years after fertilizer application, but did not have any significant effect on tree growth.  相似文献   

7.
A 2-year field experiment was conducted to evaluate the effects of Tithonia diversifolia green manure combined with either Minjingu phosphate rock (MPR) or triple super phosphate (TSP) on soil chemical properties that influence P availability, P pools and maize grain yields, on a Chromic Acrisol in Morogoro, Tanzania. Leafy biomass of tithonia was applied before maize planting for two consecutive growing seasons. Treatments compared were the control, MPR and TSP each at 80 kg P ha−1; tithonia alone at 2.5, 5.0, and 7.5 Mg ha−1 dry matter and tithonia combined with MPR or TSP at 40 kg P ha−1. Tithonia led to significant increases in soil pH, exchangeable Ca, labile (resin and NaHCO3-Pi), and moderately labile inorganic P (NaOH-Pi). It reduced exchangeable Al and P sorption. Application of MPR alone had liming effects and resulted in increase in labile P. Combining tithonia with MPR had similar but more intense effects. Triple superphosphate alone led to acidification and this was reversed when TSP was co-applied with tithonia. Increasing the application rates of tithonia either alone or in combination with TSP or MPR led to more pronounced liming effects but the differences between 2.5 and 5.0 Mg tithonia ha−1 were not significant due to moisture stress that was experienced during the season. The P and Ca concentrations of the maize plants at tasselling increased with the application of tithonia alone or combined with MPR or TSP, and were significantly correlated with maize grain yields (r = 0.75 and 0.64 for MPR and TSP, respectively). Tithonia added consecutively for 2 years increased total maize grain yields by 70% compared to that in the control. The relative agronomic effectiveness (RAE) of MPR increased from 46% in the first year of application to > 142% in the second year, indicating that the initially slow dissolution of MPR improved by combined application of tithonia and MPR, attributed to reduction of P sorption. It is concluded that tithonia can enhance P availability from the Chromic Acrisol through modification of soil properties associated with P transformation and availability. In cases where tithonia is found within the farmers’ fields its combined application with MPR can increase maize yields at a much-reduced cost associated with tithonia procurement.  相似文献   

8.
Phosphorus (P) deficiency is one of the most important constraints to food production, particularly in tropical Oxisols. This study aimed to characterize the inorganic and organic P (Pi and Po) fractions in the soil in three smallholding coffee cultivation fields managed under either agroforestry (AGF) or full sun (FSC) agroecosystems. The work was carried out in areas situated at the municipalities of Divino and Araponga in the Zona da Mata in the state of Minas Gerais, southeastern Brazil. Soil P forms including H2O–Pi; NaHCO3–Pi,Po; NaOH–Pi,Po; diluted HCl–Pi; concentrate HCl–Pi,Po and Residual-P were sequentially extracted in samples from 0 to 5 and 5 to 10-cm soil layers. Together, H2O–Pi and NaHCO3–Pi accounted on average for only 4% of soil total P in the cultivated soils. HClconc.-Pi ranged from 142.8 to 372.4 mg kg−1 being the predominant Pi fraction. AGF systems promoted an increment of 8% in the NaHCO3–Po fraction in relation to the FSC systems in the upper soil layer. The AGF systems increased HClconc.-Po pool in relation to the FSC systems in Divino and Araponga(I) soils, indicating that agroforestry is an important management strategy to increase bioavailable P and for the maintenance of organic P pool. The distribution of inorganic and organic P pools varied among the different study sites, showing that P cycling depends on the inherent characteristic of each agroecosystem. The availability of P to plants in coffee-agroforestry fields is directly associated with the cycling of the organic P pool.  相似文献   

9.
Hyperthermophilic archaeon Pyrococcus horikoshii produced phospholipase A2 in a cytosolic fraction. The enzyme displayed optimal activity at 90°C and pH 7 and preferentially hydrolyzed sn-2 fatty acids in the following order: linoleoyl> oleoyl>arachidoyl phosphatidylcholine. Phospholipase A2 had similar activities toward l-α-1-palmitoyl-2-arachidoyl derivatives of phosphatidylcholine and phosphatidylethanolamine. Phospholipase A2 activity was unaffected by the addition of 0.0001–1 mM calcium, but was inhibited slightly by the addition of 2–10 mM calcium. The activity was enhanced more than 5–18-fold in the presence of 3–20% (vol/vol) glycerol. The activity was unaffected by the addition of 1–5 mM EDTA or 0.01–20 mM dithiothreitol. A caldarchaetidic acid derivative having a molecular weight of 1544 disappeared upon incubation of the cytosolic fraction with total lipid. The phospholipase A2 was difficult to purify by general chromatography because it existed as an aggregate. Electrophoresis was carried out using 10–15% polyacrylamide gels containing sodium dodecyl sulfate (SDS-PAGE). No activity of phospholipase A2 activity was observed in the absence of proteins less than 19 kD in size, as fractionated by SDS-PAGE. Portions of this article were presented at the Biocatalysis Symposium at the 91st Annual Meeting and Expo of the American Oil Chemists’ Society in San Diego, CA, April, 2000.  相似文献   

10.
To address soil fertility decline, additions of organic resources and mineral fertilizers are often integrated in sub-Saharan African agroecosystems. Possible benefits to long-term C and N stabilization from this input management practice are, however, largely unknown. Our objectives were (1) to evaluate the effect of residue quality and mineral N on soil C and N stabilization, (2) to determine how input management and root growth interact to control this stabilization, and (3) to assess how these relationships vary with soil texture. We sampled two field trials in Kenya located at Embu, on a clayey soil, and at Machanga, on a loamy sand soil. The trials were initiated in 2002 with residue inputs of different quality (no input, high quality Tithonia diversifolia, medium quality Calliandra calothyrsus, and low quality Zea mays (maize) stover), incorporated at a rate of 4 Mg C ha−1 year−1 alone and in combination with 120 kg N ha−1 season−1 mineral fertilizer. Maize was grown in the plots each season, and a section of the plots was left uncropped. All aboveground maize residues were removed from the plots. Soil samples (0–15 cm) were collected in March 2005 to assess aggregation and C and N stabilization. The fine-textured soil at Embu was more responsive to inputs than the coarse-textured soil at Machanga. Residue additions increased macroaggregation at Embu, and cropping increased aggregation at Machanga. At Embu adding organic residue, regardless of the quality, and cropping significantly increased total soil C and N. This increase was also observed in the macroaggregate and microaggregate-within-macroaggregate fractions. Input treatments had little effect on C and N contents of the whole soil or specific fractions at Machanga. Nitrogen fertilizer additions did not significantly alter C or N content of the whole soil or specific fractions at either site. We conclude that residue quality does not affect the stabilization of soil organic C and N. Inputs of C and soil stabilization capacity are more important controls on stabilization of soil organic matter.  相似文献   

11.
Nitrogen fixation (N2) by leguminous crops is a relatively low-cost alternative to N fertilizers for smallholder farmers in Africa. Nitrogen fixation in pea (Pisum sativum L. cv. Markos) as affected by phosphorus (P) fertilization (0, 30 kg P ha−1) and inoculation (uninoculated and inoculated) in the semiarid conditions of Northern Ethiopia was studied using the 15N isotope dilution method and locally adapted barley (Hordeum vulgare L. cv. Bureguda) as reference crop. The effect of pea fixed nitrogen (N2) on yield of the subsequent wheat crop (Triticum aestivum L.) was also assessed. Phosphorus and inoculation significantly influenced nodulation at the late flowering stage and also significantly increased P and N concentrations in shoots, and P concentration in roots, while P and N concentrations in nodules were not affected. Biomass, pods m−2 and grain yield responded positively to P and inoculation, while seeds pod−1 and seed weights were not significantly affected by these treatments. Phosphorus and inoculation enhanced the percentage of N derived from the atmosphere in the whole plant ranging from 53 to 70%, corresponding to the total amount of N2 fixed varying from 55 to 141 kg N ha−1. Soil N balance after pea ranged from − 9.2 to 19.3 kg N ha−1 relative to following barley, where barley extracted N on the average of 6.9 and 62.0 kg N ha−1 derived from fertilizer and soil, respectively. Beneficial effects of pea fixed N2 on yield of the following cereal crop were obtained, increasing the average grain and N yields of this crop by 1.06 Mg ha−1 and 33 kg ha−1, respectively, relative to the barley–wheat monocrop rotation. It can be concluded that pea can be grown as an alternative crop to fallow, benefiting farmers economically and increasing the soil fertility.  相似文献   

12.
The monitoring in real time of dynamic extractions of tagitinin C from Tithonia diversifolia leaves was carried out with a home made high-pressure fiber optic cell which coupled a supercritical fluid extractor with carbon dioxide as the extraction medium and a FT-IR spectrometer equipped with a mercury cadmium telluride detector (MCT). The shape of extraction curves obtained during the monitoring was used to decide when to stop the supercritical fluid extraction (SFE).No significant density dependence of the molar absorption coefficient or wavenumber of the CO stretching vibration (νCO) of tagitinin C at 1668 cm−1 was noticed.The physical characteristics of SCCO2 governing the extraction yield of the active component from leaves were optimized by means of a central composite design (CCD). The studied variables were temperature (40, 60 and 80 °C) and pressure (8.0, 14.0 and 20.0 MPa) of the supercritical fluid.The composition profile of T. diversifolia extracts obtained by SFE was investigated in the range from 3400 to 2600 cm−1 according to the pressure and temperature conditions of SCCO2. The qualitative approach of the extracts composition was accomplished through the CH stretching vibrations (νCH) of components.  相似文献   

13.
The application of nitrogen in a soil under agricultural production is subject to several pathways including de-nitrification, leaching and recovery by an annual crop. This is as well greatly influenced by the management practices, nitrogen source and soil conditions. The main objective of this study was to investigate the loss of nitrogen (N) through nitrous oxide (N2O) emissions and mineral N leaching and uptake by annual crop as influenced by the N source. The study was carried out at Kabete in Central Kenya. Measurements were taken during the second season after two seasons of repeated application of N as urea and Tithonia diversifolia (tithonia) leaves. Results obtained indicated that nitrous oxide (N2O) emissions at 4 weeks after planting were as high as 12.3 μg N m −2 h−1 for tithonia treatment and 2.9 μg N m−2 h−1 for urea treatment. Tithonia green biomass treatment was found to emit N2O at relatively higher rate compared to urea treatment. This was only evident during the fourth week after treatment application.Soil mineral N content at the end of the season increased down the profile. This was evident in the three treatments (urea, tithonia and control) investigated in the study. Urea treatment exhibited significantly higher mineral N content down the soil profile (9% of the applied N) compared to tithonia (0.6% of the applied N). This was attributed to the washing down of the nitrate-N from the topsoil accumulating in the lower layers of the soil profile. However, there was no significant difference in N content down the soil profile between tithonia treatment and the control. It could be concluded that there was no nitrate leaching in the tithonia treatment. Nitrogen recovery by the maize crop was higher in the urea treatment (76% of the applied N) as compared to tithonia treatment (55.5% of the applied N). This was also true for the residual mineral N in the soil at the end of the season which was about 7.8% of the applied N in the urea treatment and 5.2% in the tithonia treatment.From this study, it was therefore evident that although there is relatively lower N recovery by maize supplied with tithonia green biomass compared to maize supplied with urea, more nitrogen is being lost (through leaching) from the soil–plant system in the urea applied plots than in tithonia applied plots. However, a greater percentage (37.8%) of the tithonia-applied N could not be accounted for and might have been entrapped in the soil organic matter unlike urea-applied N whose greater percentage (92%) could be accounted for.  相似文献   

14.
The reductive alkylation of p-nitroaniline with 5-methyl-2-hexanone over copper-based catalysts was investigated. Furthermore, the catalysts were characterized using the techniques of XRD, H2–N2O titration, H2-TPR, NH3-TPD and pyridine-FTIR. The results showed that the addition of Mn, Ba and La into Cu–SiO2 catalyst played an important role in the improvement of the selectivity towards N,N′-bis(1,4-dimethylpentyl)-p-phenylenediamine (BMPPD). The highest selectivity towards BMPPD over 58CuO–9MnO2–BaO–1La2O3–30SiO2 (wt.%) catalyst could be ascribed to the best dispersion of copper (i.e., the highest hydrogenation ability) and the most amounts of the surface Lewis acidic sites.  相似文献   

15.
Developing soil fertility management options for increasing productivity of staple food crops is a challenge in most parts of Sub-Saharan Africa, where soils are constrained by nitrogen (N) and phosphorus (P) deficiencies. A study was conducted to evaluate the response of indigenous legume populations to mineral P application, and subsequently their benefits to maize yield. Mineral P was applied at 26 kg P ha−1 before legume species were sown in mixtures at 120 seeds m−2 species−1 and left to grow over two rainy seasons (2 years). Application of P increased overall biomass productivity by 20–60% within 6 months, significantly influencing the composition of non-leguminous species. Dinitrogen fixation, as determined by the N-difference method, was increased by 43–140% although legume biomass productivity was apparently limited by nutrients other than P and N. Crotalaria pallida and C. ochroleuca accounted for most of the fixed N. Improved N supply increases the abundance of non-leguminous species, particularly Conyza sumatrensis and Ageratum conyzoides. However, abundance of common weed species, Commelina benghalensis, Richardia scabra and Solanum aculeastrum, declined by up to18%. Application of P did not significantly influence productivity of those legume species that reached maturity within 3 months. There was increased N2-fixation and biomass productivity of indifallows as influenced by specific legume species responding to P application. Compared with natural (grass) fallows, indigenous legume fallows (indifallows) increased subsequent maize grain yields by ~40%. Overall, 1- and 2-year indifallows gave maize grain yields of >2 and 3 t ha−1, respectively, against <1 t ha−1 under corresponding natural fallows. Two-year indifallows with P notably increased maize yields, but the second year gave low yields regardless of P treatment. Because of their low P requirement, indigenous legume fallows have potential to stimulate maize productivity under some of the most nutrient depleted soils.  相似文献   

16.
Field and incubation experiments were conducted during 2007–2009 to study the effect of drainage in the fallow season on CH4 production and emission from permanently flooded rice fields. It was found that drainage in the fallow season significantly affected the temporal variations of CH4 production and emission from permanently flooded rice fields. CH4 production and emission from permanently flooded rice fields (Treatment FF) mainly occurred during the rice season, where they were found to be much lower in the late fallow season. No CH4 flux was detected from drained fields (Treatment DF) in the fallow season. Compared with Treatment FF, Treatment DF was delayed not only its onset of CH4 production and emission, but also appearance of the highest peak of CH4 production during the rice season. A significant positive relationship was observed between CH4 production rates of paddy soil and corresponding CH4 fluxes (P < 0.01). CH4 production in rice roots was the highest in rate at the rice booting stage, but was obviously lower at the rice tillering, grain filling and ripening stages, and the highest value reached at the same time as the peak of CH4 production occurred in the paddy soil. Drainage in the fallow season significantly decreased CH4 production and emission from Treatment FF. Compared with Treatment FF, Treatment DF was about 42–61% lower in mean CH4 production rate in the paddy soil during the rice season, and was reduced by approximately 56% in mean CH4 production rate in rice roots. Accordingly, Treatment DF was 20.6–30.2 g CH4 m−2, 39–52% lower than Treatment FF in total CH4 emission during the rice season, and 44–57% lower in annual total CH4 emission. Rice yield in Treatment DF tended to be 4–7% lower than that in Treatment FF.  相似文献   

17.
Seeds from different collections of cultivatedSesamum indicum Linn. and three related wild species [specifically,S. alatum Thonn.,S. radiatum Schum and Thonn. andS. angustifolium (Oliv.) Engl.] were studied for their oil content and fatty acid composition of the total lipids. The wild seeds contained less oil (ca. 30%) than the cultivated seeds (ca. 50%). Lipids from all four species were comparable in their total fatty acid composition, with palmitic (8.2–12.7%), stearic (5.6–9.1%), oleic (33.4–46.9%) and linoleic acid (33.2–48.4%) as the major acids. The total lipids from selected samples were fractionated by thin-layer chromatography into five fractions: triacylglycerols (TAG; 80.3–88.9%), diacylglycerols (DAG; 6.5–10.4%), free fatty acids (FFA; 1.2–5.1%), polar lipids (PL; 2.3–3.5%) and steryl esters (SE; 0.3–0.6%). Compared to the TAG, the four other fractions (viz, DAG, FFA, PL and SE) were generally characterized by higher percentages of saturated acids, notably palmitic and stearic acids, and lower percentages of linoleic and oleic acids in all species. Slightly higher percentages of long-chain fatty acids (20∶0, 20∶1, 22∶0 and 24∶0) were observed for lipid classes other than TAG in all four species. Based on the fatty acid composition of the total lipids and of the different acyl lipid classes, it seems thatS. radiatum andS. angustifolium are more related to each other than they are to the other two species.  相似文献   

18.
Enyzmatic amidation of the primary amines β-alanine ethyl ester and 3-aminopropionitrile with methyl laurate by means of immobilized lipase (Candida antarctica lipase, CAL) resulted in the formation in good yield of N-lauroyl-β-alanine ethyl ester and 3-(N-lauroylamino)-propionitrile, respectively. When 3-amino-propionitrile was used as substrate, diisopropyl ether was a suitable solvent. Changing the reaction temperature (12–80°C) did not affect the yields, and room temperature was a suitable temperature for this reaction. In the investigation of reaction conditions, the use of equimolar amounts (5 mmol) of substrate and ester, along with 0.5 g of CAL, in diisopropyl ether gave the best yield (99.3%) after 24 h of incubation at 24°C. The enzyme activity in the amidation reaction did not decrease even after six uses. With β-alanine ethyl ester hydrochloride as substrate, diisopropyl ether was unsuited as a solvent owing to the low solubility of the substrate in this solvent. In this reaction, the best yield (82.0%) was attained by using dioxane as solvent. CAL achieved higher extents of amide synthesis with long-chain than with short-chain ester substrates. The enzyme accepted only nonbulky primary amines as substrates.  相似文献   

19.
Fatty acid (FA) compositions and molecular species of triacylglycerols (TAG) isolated from total lipids extracted from adzuki beans (Vigna angularis) were determined with a combination of AgNO3-TLC and GC, and were compared in relation to the content of endogenous antioxidants analyzed by HPLC. δ-Tocopherol was present in the highest concentration (53.7–89.3 mg/kg), and γ-tocopherol in small amounts (11.2–14.8 mg/kg). The main lipid components were phospholipids (72.2–73.4%) and TAG (20.6–21.9%), whilst other components were also present in minor proportions (0.1–3.4%). Eighteen different TAG molecular species were identified and quantified by successive applications of AgNO3-TLC and GC. The main components were SMD (4.6–5.0%), S2T (13.4–16.4%), SD2 (11.8–14.3%), SMT (7.3–8.3%), SDT (9.9–10.6%), D3 (6.9–7.9%), MT2 (5.2–6.3%), D2T (7.0–11.2%), DT2 (7.4–7.6%) and T3 (6.2–7.2%) (where S, M, D, and T denote a saturated FA, a monoene, a diene, and a triene, respectively). No marked difference (P > 0.05) in the molecular species composition could be observed among the five cultivars. The results could be useful to both consumers and producers for manufacturing traditional adzuki confectionaries in Japan and elsewhere.  相似文献   

20.
Biofiltration was performed for 50 days in a perlite-packed biofilter (8 cm I.D.x 105 cm height) for the simultaneous removal of toluene and dimethyl sulfide (DMS). Two strains,Rhodococcus pyridinovorans PYJ-1 andGordonia sihwaniensis PKL-1, were cocultured in the biofilter. Removal efficiencies of toluene and DMS at an empty bed residence time (EBRT) of 3 min were 80–85% and 40–45%, respectively, for an input concentration of 2.5–3.0 mg/L of toluene and 1.5–2.0 mg/L of DMS. The pH of the perlite column was maintained at 7.0–7.2, and the moisture content varied from 61% at the bottom to 51% at the top. Starting from the same initial cell concentration (2.4 x 106 CFU/g of wet packing) the number ofR. pyridinovorans PYJ-1 was 2.5 times higher compared with that of G.sihwaniensis PKL-1 after 50 days of operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号